Low-Power, Two-Port, High-Speed, USB2.0 (480 Mbps) Switch # FSUSB43 ## Description The FSUSB43 is a bi-directional, low-power, two-port, high-speed, USB2.0 switch. Configured as a double-pole, double-throw (DPDT) switch, it is optimized for switching between two high-speed (480 Mbps) sources or a high-speed and full-speed (12 Mbps) source. The FSUSB43 is compatible with the requirements of USB2.0 and features an extremely low on capacitance (C_{ON}) of 5.7 pF. The wide bandwidth of this device (720 MHz) exceeds the bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference. The FSUSB43 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC} = 0), which allows the device to withstand an over-voltage condition. This minimizes current consumption even when the control voltage applied to the SEL pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to mobile applications, such as cell phones, allowing for direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers. ## Features - Over-Voltage Tolerance (OVT) on all USB Ports up to 5.25 V without External Components - Low On Capacitance: 5.7 pF Typical - Low On Resistance: 3.9 Low On Resistance: 3.9 Ω Typical Typical - Low Power Consumption: 1 μA Maximum - 20 μA Maximum ICCT over an Expanded Voltage Range (V_{IN} = 1.8 V, V_{CC} = 4.3 V) - Wide -3 db Bandwidth: >720 MHz - Packaged in 10-Lead MicroPakTM (1.6 x 2.1 mm) - 8 kV ESD Rating, > 16 kV Power/GND ESD Rating - Power-Off Protection on All Ports when $V_{CC} = 0 \text{ V}$ - ◆ D+/D− Pins Tolerate up to 5.25 V # **Typical Applications** - Cell phone, PDA, Digital Camera, and Notebook - LCD Monitor, TV, and Set-Top Box UQFN10 1.6 × 1.20 CASE 523AZ #### MARKING DIAGRAM JH = Specific Device Code&K = 2 Digit Lot Run Code X = Year Y = 2 Week Data Code Z = Plant Code #### **PIN CONNECTION** ### **ANALOG SYMBOL** #### ORDERING INFORMATION See detailed ordering and shipping information on page 7 of this data sheet. **Table 1. PIN DESCRIPTION** | Pin # | Name | Description | |-------|-----------------|---------------------------| | 1 | HSD1+ | Multiplexed Source Inputs | | 2 | HSD1- | Multiplexed Source Inputs | | 3 | HSD2+ | Multiplexed Source Inputs | | 4 | HSD2- | Multiplexed Source Inputs | | 5 | GND | Ground | | 6 | ŌĒ | Switch Enable | | 7 | D- | USB Data Bus | | 8 | D+ | USB Data Bus | | 9 | SEL | Switch Select | | 10 | V _{CC} | Supply Voltage | #### **Table 2. TRUTH TABLE** | SEL | ŌĒ | Function | |------|------|-----------------------| | X | HIGH | Disconnect | | LOW | LOW | D+, D- = HSD1+, HSD1- | | HIGH | LOW | D+, D- = HSD2+, HSD2- | #### **Table 3. ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Parameter | | | Unit | |--------------------|---|-------------------|------|----------|------| | V _{CC} | Supply Voltage | | -0.5 | +5.5 | V | | V _{CNTRL} | DC Input Voltage (SEL, OE) (Note 1) | | -0.5 | V_{CC} | V | | W _{SW} | ALL PINS for V _{CC} 0 to 5.5 V | | -0.5 | 5.5 | V | | I _{IK} | DC Input Diode Current | | -50 | | mA | | I _{OUT} | DC Output Current | DC Output Current | | 100 | mA | | T _{STG} | Storage Temperature | | -65 | +150 | °C | | ESD | Human Body Model: JEDEC JESD22-A114 | All Pins | | 8 | kV | | | | I/O to GND | | 9 | | | | Power to GND | | | 16 | | | | Charged Device Model: JEDEC JESD22-C101 | | | 2 | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ## **Table 4. RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Max | Unit | |--------------------|--|------|-----------------|------| | V _{CC} | Supply Voltage | 2.4 | 4.4 | V | | V _{CNTRL} | Control Input Voltage (SEL, OE) (Note 2) | 0 | V _{CC} | V | | V _{SW} | Switch I/O Voltage | -0.5 | 4.5 | V | | T _A | Operating Temperature | -40 | +125 | °C | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 2. The control input must be held HIGH or LOW; it must not float. ^{1.} The input and output negative ratings may be exceeded if the input and output diode current ratings are observed. **Table 5. DC ELECTRICAL CHARACTERISTICS** | | | | | T _A (Note 3) | | | | |------------------|--|---|---------------------|-------------------------|------|------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Тур | Max | Unit | | V _{IK} | Clamp Diode Voltage | I _{IN} = -18 mA | 3.0 | | | -1.2 | V | | V _{IH} | Input Voltage High | | 2.4 to 3.6 | 1.3 | | | V | | | | | 4.3 | 1.7 | | | V | | V _{IL} | Input Voltage Low | | 2.4 to 3.6 | | | 0.5 | V | | | | | 4.3 | | | 0.7 | V | | I _{IN} | Control Input Leakage | V _{SW} = 0 V to V _{CC} | 4.3 | -1.0 | | 1.0 | μΑ | | I _{OZ} | Off State Leakage | 0 ≤ Dn, HSD1n, HSD2n ≤ 3.6 V | 4.3 | -2.0 | | 2.0 | μΑ | | I _{OFF} | Power-Off Leakage Current
(All I/O Ports) | V _{SW} = 0 V to 4.3 V,
V _{CC} = 0 V (Figure 2) | 0 | -2 | | 2 | μΑ | | R _{ON} | HS Switch On Resistance | V _{SW} = 0.4 V, I _{ON} = -8 mA | 2.4 | | 4.5 | 7.5 | Ω | | | (Note 4) | (Figure 1) | 3.0 | | 3.9 | 6.5 | | | R _{ON} | HS Switch On Resistance | V _{SW} = 0.4 V, I _{ON} = -8 mA | 2.4 | | 4.5 | 9 | Ω | | | (Note 4) | -40°C to 125°C
(Figure 1) | 3.0 | | 3.9 | 8 | | | ΔR_{ON} | HS Delta R _{ON} (Note 5) | $V_{SW} = 0.4 \text{ V}, I_{ON} = -8 \text{ mA}$ | 3.0 | | 0.65 | | Ω | | lQ | Quiescent Supply Current | V _{CNTRL} = 0 or V _{CC} , I _{OUT} = 0 | 4.3 | | | 1.0 | μΑ | | I _{CCT} | Increase in IQ Current per | V _{CNTRL} = 2.6 V, V _{CC} = 4.3 V | 4.3 | | | 10.0 | μΑ | | | Control Voltage and V _{CC} | V _{CNTRL} = 1.8 V, V _{CC} = 4.3 V | 4.3 | | | 20.0 | μА | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. All typical values are 25°C, and Min/Max values are -40°C to +85°C unless otherwise specified. 4. Measured by the voltage drop between HSDn and Dn pins at the indicated current through the switch.On resistance is determined by the **Table 6. AC ELECTRICAL CHARACTERISTICS** | | | | | | T _A (Note 3 | 3) | | |------------------|--|--|---------------------|-----|------------------------|-----|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Тур | Max | Unit | | t _{ON} | Turn-On Time, | $R_L = 50 \Omega$, $C_L = 5 pF$, $V_{SW} = 0.8 V$ | 2.4 | | 24 | 40 | ns | | | SEL, OE to Output | (Figure 3), (Figure 4) | 3.0 to 3.6 | | 13 | 30 | | | t _{OFF} | Turn-Off Time, | $R_L = 50 \Omega$, $C_L = 5 pF$, $V_{SW} = 0.8 V$ | 2.4 | | 15 | 35 | ns | | | SEL, OE to Output | (Figure 3), (Figure 4) | 3.0 to 3.6 | | 12 | 25 | | | t _{PD} | Propagation Delay
(Note 6) | $R_L = 50 \ \Omega$, $C_L = 5 \ pF$
$-40^{\circ}C$ to $125^{\circ}C$
(Figure 3), (Figure 5) | 3.3 | | 0.25 | | ns | | t _{BBM} | Break-Before-Make Time | $R_L = 50 \Omega, C_L = 5 pF,$ | 2.4 | 2.0 | | 10 | ns | | | (Note 6) | V _{SW1} = V _{SW2} = 0.8 V
(Figure 7) | 3.0 to 3.6 | 2.0 | | 6.5 | | | OIRR | Off Isolation
(Note 6) | R_L = 50 Ω , f = 240 Mhz (Figure 9) | 3.0 to 3.6 | | -30 | | dB | | Xtalk | Non-Adjacent Channel
Crosstalk (Note 6) | R_L = 50 Ω , f = 240 Mhz (Figure 10) | 3.0 to 3.6 | | -45 | | dB | | BW | -3dB Bandwidth
(Note 6) | R_L = 50 Ω, C_L = 0 pF (Figure 8) | 3.0 to 3.6 | | 720 | | MHz | | | | R_L = 50 Ω, C_L = 5 pF (Figure 8) | | | 550 | | MHz | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Guaranteed by characterization. lower of the voltage on the two (HSDn or Dn ports). Guaranteed by characterization. Table 7. USB HIGH-SPEED-RELATED AC ELECTRICAL CHARACTERISTICS | | | | | T _A (Note 3) | | | | |--------------------|--|--|---------------------|-------------------------|-----|-----|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Тур | Max | Unit | | t _{SK(P)} | Skew of Opposite Transitions of the Same Output (Note 7) | $R_L = 50 \Omega$, $C_L = 5 pF$ (Figure 6) | 3.0 to 3.6 | | 20 | | ps | | tu | Total Jitter
(Note 7) | $\begin{array}{l} R_L = 50 \ \Omega, \ C_L = 5 \ pF, \\ t_r = t_f = 500 \ ps \ (10-90\%) \ at \\ 480 \ Mbps \ (PRBS = 2^{15} - 1) \end{array}$ | 3.0 to 3.6 | | 200 | | ps | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Guaranteed by characterization. # **Table 8. CAPACITANCE** | | | | T _A (Note 3) | | | | |------------------|--|--|-------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | C _{IN} | Control Pin Input Capacitance (Note 8) | V _{CC} = 0 V | | 1.5 | | pF | | C _{ON} | D+/D- On Capacitance (Note 8) | $V_{CC} = 3.3 \text{ V}, \overline{OE} = 0 \text{ V}, \\ -40^{\circ}\text{C to } 125^{\circ}\text{C} \\ f = 240 \text{ Mhz} \text{ (Figure 12)}$ | | 5.5 | | | | C _{OFF} | D1n, D2n Off Capacitance (Note 8) | V _{CC} and \overline{OE} = 3.3 V
(Figure 11) | | 2.0 | | | ^{8.} Guaranteed by characterization. ## **TEST DIAGRAMS** Figure 1. On Resistance R_L , R_S , and C_L are functions of the application environment (see AC Tables for specific values) C_L includes test fixture and stray capacitance. Figure 3. AC Test Circuit Load Figure 5. Propagation Delay (t_Rt_F - 500 ps) **Each switch port is tested separately Figure 2. Off Leakage Figure 4. Turn-On / Turn-Off Waveforms Figure 6. Intra-Pair Skew Test t_{SK(P)} # TEST DIAGRAMS (Continued) Figure 7. Break-Before-Make Interval Timing $R_S, \mbox{ and } R_T \mbox{ are functions of the application}$ environment (see AC Tables for specific values). $R_S, \, \mbox{and} \, R_T$ are functions of the application environment (see AC Tables for specific values). Figure 8. Bandwidth Figure 9. Channel Off Isolation Figure 10. Non-Adjacent Channel-to-Channel Crosstalk # TEST DIAGRAMS (Continued) Figure 11. Channel Off Capacitance Figure 12. Channel On Capacitance ## **Table 9. ORDERING INFORMATION** | Part Number | Device Code | Operating Temperature Range | Package | Shipping [†] | |-------------|-------------|-----------------------------|---|-----------------------| | FSUSB43L10X | JH | −40 to 125°C | 10-Lead MicroPak
(1.6 x 2.1 mm)
JEDEC MO-255B | 5000 / Tape and Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ## UQFN10 (MICROPAK™), 1.6X2.1, 0.5P CASE 523AZ ISSUE A **DATE 11 DEC 2019** #### NOTES: A. PACKAGE CONFORMS TO JEDEC REGISTRATION MO-255, VARIATION UABD. B. DIMENSIONS ARE IN MILLIMETERS. PRESENCE OF CENTER PAD IS PACKAGE SUPPLIER DEPENDENT. IF PRESENT IT IS NOT INTENDED TO BE SOLDERED AND HAS A BLACK OXIDE FINISH. D. DIMENSIONS WITHIN () ARE UNCONTROLLED. | DIM | MIN. | NOM. | MAX. | |-----|------|----------|------| | Α | 0.50 | 0.55 | 0.65 | | A1 | 0.00 | 0.025 | 0.05 | | b | 0.15 | 0.20 | 0.25 | | D | 2.00 | 2.10 | 2.20 | | D1 | 0.55 | 0.60 | 0.65 | | E | 1.50 | 1.60 | 1.70 | | E1 | 0.15 | 0.20 | 0.25 | | e | | 0.50 BSC | | | e1 | | 1.62 BSC | | | k | 0.20 | | | | L | 0.25 | 0.30 | 0.42 | | L1 | 0.00 | 0.09 | 0.15 | | L3 | 0.25 | 0.30 | 0.35 | # RECOMMENDED MOUNTING FOOTPRINT * *FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON13592G | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|------------------------|--|--|--|--| | DESCRIPTION: | UQFN10 (MICROPAK™), 1. | UQFN10 (MICROPAK™), 1.6X2.1, 0.5P | | | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative