

o 3

D11

D2 Δ

0 2

IGBT Module

phaseleg and chopper topolgies with optional temperature sensor

1 2 3

MII 400-12E4 MID 400-12E4(T) MDI 400-12E4 **-0** 3 D1 D2 D12 10 2 **o** 2 NTC for ...T version only

Symbol

IGDISTI	- 12			
Symbol	Conditions Ma	Maximum Ratings		
V _{CES}	$T_{vJ} = 25^{\circ}C$ to $125^{\circ}C$	1200	V	
V_{ges}		± 20	V	
I _{C25} I _{C80}	$T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$	420 300	A A	
I _{см} V _{сек}	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 4.7 \Omega; \text{ T}_{VJ} = 125^{\circ}\text{C}$ RBSOA Clamped inductive load; L = 100 µH	450 V _{CES}	A	
t _{sc} (SCSOA)	V_{CE} = 900 V; V_{GE} = ±15 V; R_G = 4.7 Ω T_{VJ} = 125°C; non-repetitive	10	μs	
P _{tot}	$T_c = 25^{\circ}C$	1700	W	

Characteristic Values

(T_{vJ} = 25°C, unless otherwise specified)

		min.	typ.	max.	
V _{CE(sat)}	$I_{c} = 300 \text{ A}; V_{GE} = 15 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.2 2.6	2.8	V V
V _{GE(th)}	$I_{\rm C} = 10 \text{ mA}; V_{\rm GE} = V_{\rm CE}$	4.5		6.5	V
I _{CES}	$V_{CE} = V_{CES}; V_{GE} = 0 V;$ $T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		0.8 3.5	3.3	mA mA
I _{GES}	$V_{\text{CE}}=0 \text{ V}; V_{\text{GE}}=\pm 20 \text{ V}$			600	nA
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \end{array}$	$\left. \begin{array}{l} \text{Inductive load, } T_{\text{VJ}} = 125^{\circ}\text{C} \\ \text{V}_{\text{CE}} = 600 \text{ V; } \text{I}_{\text{C}} = 300 \text{ A} \\ \text{V}_{\text{GE}} = \pm 15 \text{ V; } \text{R}_{\text{G}} = 4.7 \Omega \end{array} \right.$		170 60 680 50 44 30		ns ns ns mJ mJ
C _{ies} Q _{Gon}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; \text{ f} = 1 \text{ MHz}$ $V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; \text{ I}_{C} = 300 \text{ A}$		17 1.74		nF μC
$f R_{thJC} \ R_{thJH}$	(per IGBT) with heatsink compound		0.15	0.08	K/W K/W

Features

- NPT³ IGBT
- low saturation voltage
- positive temperature coefficient _
- fast switching
- short tail current for optimized performance in resonant circuits
- HiPerFRED[™] diodes
- fast and soft reverse recovery
- low operating forward voltage
- low leakage current
- NTC sensor for measurement of case temperature
- Package
- low inductive current path
- screw connection to high current main terminals
- use of non interchangeable connectors for auxiliary terminals possible
- Kelvin emitter terminal for easy drive
- isolated ceramic base plate

Applications

- drives
- AC
- DC
- power supplies
- rectifiers with power factor correction and recuperation capability
- UPS

Conditions

MID400-12E4(T) MDI400-12E4

Free wheeling diodes D1 - D2						
Symbol	Conditions Maximum Ratings				atings	
I _{F25} I _{F80}	$T_c = 25^{\circ}C$ $T_c = 80^{\circ}C$				450 290	A A
Symbol	Conditions Characteristic Va				alues	
			min.	typ.	max.	
V _F	. ae	T _{vJ} = 25°C T _{vJ} = 125°C		2.3 1.7	2.7	V V
I _{RM} t _{rr}	$ \label{eq:IF} \left. \begin{array}{l} I_{F} = 225 \text{ A}; \ di_{F}/dt = -2000 \text{ A}/2000 \text{ A}/20000 \text{ A}/20000 \text{ A}/2000 \text{ A}/20000 \text{ A}/20000 \text{ A}/200$	/μs; T _{vJ} = 125°C		200 220		A ns
R _{thJC} R _{thJH}	(per IGBT) with heatsink compound			0.3	0.15	K/W K/W

Dimensions in mm (1 mm = 0.0394")

Optional accessories for modules

keyed twin plugs (UL758, style 1385, CSA class 5851, guide 460-1-1)

- Type ZY180L with wire length 350mm – for pins 11 (yellow wire) and 10 (red wire)
- Type ZY180R with wire length 350mm for pins 8 (yellow wire) and 9 (red wire)

Chopper anti parallel diodes D11 - D12						
Symbol	Conditions	Maximum Ratings				
I _{F25}	T _c = 25°C	150 A				
I _{F80}	$T_c = 80^{\circ}C$	95				
Symbol	Conditions	Characteristic Values				

Symbol	Conditions		Characteristic values			
			min.	typ.	max.	
V _F	$I_F = 100 \text{ A}; V_{GE} = 0 \text{ V};$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		2.3 1.7	2.7	v v
l _{RM} t _{rr}	$\left. \begin{array}{l} {} \\ {} \\ {} \\ {} \\ {} \\ {} \\ {} \\ {$	Vμs; Τ _{vJ} = 125°C		80 220		A ns
${f R}_{thJC} \ {f R}_{thJH}$	(per IGBT) with heatsink compound	ł		0.9	0.45	K/W K/W
Tamanan	atura Canada NTC (Tura		5			

Temperature Sensor NTC (1 Version only)						
Symbol	Conditions	Characteristic Values				
		min.	typ.	max.		
R ₂₅	$T = 25^{\circ}C \left\{ R(T) = R_{25} \cdot e^{B_{25/100}} \left(\frac{1}{T} \cdot \frac{1}{298K} \right) \right\}$		2200		kΩ	
B _{25/100}			3560		K	

Module						
Symbol	Conditions Maximum Ratings					
T _{VJ} T _{stg}	operating	-40+150 -40+125	O° O°			
V _{ISO}	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$	4000	٧~			
M _d	Mounting torque (module, M6) (terminal, M6)	2.25 - 2.75 4.5 - 5.5	Nm Nm			

Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
d _s	Creepage distance on surface	2			mm
d _A	Strike distance in air	2			mm
Weight			250		g

IXYS reserves the right to change limits, test conditions and dimensions.