RoHS Sx01E & SxN1 Series

Littelfuse

Expertise Applied Answers Delivered

Description

Excellent for lower current heat, lamp, and audible alarm controls for home goods.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Typical applications are AC solid-state switches, fluidlevel sensors, strobes, and capacitive-discharge

Features & Benefits

• RoHS compliant

Applications

ignition systems.

- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 30 A

Main Features							
Symbol	Value	Unit					
I _{T(RMS)}	1	А					
$V_{\rm drm}/V_{\rm rrm}$	400 to 600	V					
	10	mA					

Absolute Maximum Ratings – Standard SCRs

Symbol	Parameter	Test Conditions	Value	Unit
I _{T(RMS)}	RMS on-state current	T _c = 90°C	1	A
I _{T(AV)}	Average on-state current	$T_c = 90^{\circ}C$	0.64	A
1	Peak non-repetitive surge current	single half cycle; f = 50Hz; T _J (initial) = 25°C	25	A
I _{TSM} Peak no	reak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	30	A
l²t	l ₂ t Value for fusing	t _p = 8.3 ms	3.7	A²s
di/dt	Critical rate of rise of on-state current	$f = 60Hz$; $T_{J} = 125^{\circ}C$	50	A/µs
I _{GM}	Peak gate current	T _J = 125°C	1.5	A
P _{G(AV)}	Average gate power dissipation	0.3	W	
T _{stg}	Storage temperature range		-40 to 150	°C
T _J	Operating junction temperature range		-40 to 125	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit		
			10		
I _{GT}	$V_{\rm D}$ = 12V; $R_{\rm L}$ = 60 Ω	MIN.	1	mA	
V _{GT}		MAX.	1.5	V	
-l / -l.t.	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 100^{\circ}{\rm C}$	MIN.	20	N//	
dv/dt	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 125^{\circ}{\rm C}$	IVIIIN.		V/µs	
V _{gd}	$V_{\rm D} = V_{\rm DRM}$; $R_{\rm L} = 3.3 \text{ k}\Omega$; $T_{\rm J} = 125^{\circ}\text{C}$	MIN.	0.2	V	
I _H	I _T = 200mA (initial)	MAX.	30	mA	
t _q	(1)	MAX.	35	μs	
t _{gt}	$I_{g} = 2 \times I_{gT}$; PW = 15 μ s; $I_{T} = 2A$	TYP.	2	μs	

(1) I_T=1A; t_p=50µs; dv/dt=20V/µs; di/dt=-10A/µs

Static Characteristics									
Symbol	Test Condit	ions		Value	Unit				
V _{TM}	$I_{T} = 2A; t_{p} = 380 \ \mu s$	$l_{T} = 2A; t_{p} = 380 \ \mu s$							
		T _J = 25°C		10					
I _{drm} / I _{rrm}	$V_{\text{DRM}} = V_{\text{RRM}}$	T _J = 100°C	MAX.	200	μA				
		$T_J = 125^{\circ}C$		500					

Thermal Resistances								
Symbol	Parameter		Value	Unit				
P	Junction to case (AC)	Sx01E	50	°C/W				
$R_{_{\theta(J-C)}}$	Junction to case (AC)		35*					
R _{θ(J-A)}	Junction to ambient	Sx01E	145	°C/W				

Notes : x = voltage * = Mounted on 1 cm² copper (two-ounce) foil surface

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

Figure 4: On-State Current vs. On-State Voltage (Typical)

1.0A SCRs

Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

©2010 Littelfuse, Inc Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

Figure 8: Maximum Allowable Ambient Temperature vs. RMS On-State Current

Figure 9: Maximum Allowable Ambient Temperature vs. Average On-State Current

Figure 11: Peak Capacitor Discharge Current Derating

Figure 10: Peak Capacitor Discharge Current

Teccor[®] brand Thyristors

1 Amp Standard SCRs

Figure 12: Surge Peak On-State Current vs. Number of Cycles

Littelfuse

Expertise Applied | Answers Delivered

RMS On-State Current: $[I_{T(RMS)}]$: Maximum Rated Value at Specified Case Temperature

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra (T _L) to pea	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t_)		20 – 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Environmental Specifications

Expertise Applied | Answers Delivered

Physical Specifications

Terminal Finish 100% Matte Tin-plated				
Body Material	UL recognized epoxy meeting flammability classification 94V-0			
Lead Material	Copper Alloy			

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Test **Specifications and Conditions** MIL-STD-750, M-1040, Cond A Applied AC Blocking Peak AC voltage @ 125°C for 1008 hours MIL-STD-750, M-1051, **Temperature Cycling** 100 cycles; -40°C to +150°C; 15-min dwell-time EIA / JEDEC, JESD22-A101 Temperature/ 1008 hours; 320V - DC: 85°C; 85% Humidity rel humidity MIL-STD-750, M-1031, **High Temp Storage** 1008 hours: 150°C 1008 hours; -40°C Low-Temp Storage MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell-Thermal Shock time at each temperature; 10 sec (max) transfer time between temperature EIA / JEDEC, JESD22-A102 Autoclave 168 hours (121°C at 2 ATMs) and 100% R/H Resistance to MIL-STD-750 Method 2031 Solder Heat Solderability ANSI/J-STD-002, category 3, Test A Lead Bend MIL-STD-750, M-2036 Cond E

Dimensions – TO-92 (E Package)

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.176	0.196	4.47	4.98
В	0.500		12.70	
D	0.095	0.105	2.41	2.67
E	0.150		3.81	
F	0.046	0.054	1.16	1.37
G	0.135	0.145	3.43	3.68
Н	0.088	0.096	2.23	2.44
J	0.176	0.186	4.47	4.73
К	0.088	0.096	2.23	2.44
L	0.013	0.019	0.33	0.48
Μ	0.013	0.017	0.33	0.43

All leads insulated from case. Case is electrically nonconductive

Dimensions - Compak (C Package)

Dimension	Incl	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.130	0.156	3.30	3.95
В	0.201	0.220	5.10	5.60
С	0.077	0.087	1.95	2.20
D	0.159	0.181	4.05	4.60
E	0.030	0.063	0.75	1.60
F	0.075	0.096	1.90	2.45
G	0.002	0.008	0.05	0.20
Н	0.077	0.104	1.95	2.65
J	0.043	0.053	1.09	1.35
К	0.006	0.016	0.15	0.41
L	0.030	0.055	0.76	1.40
М	0.022	0.028	0.56	0.71
Ν	0.027	0.033	0.69	0.84
Р	0.052	0.058	1.32	1.47

Part Number	Part Number		Voltage		Gate Sensitivity	Tuno	Deskere
rait Nulliber	400V	600V	800V	1000V		Туре	Package
Sx01E	Х	Х			10mA	Standard SCR	TO-92
SxN1	Х	Х			10mA	Standard SCR	Compak

Note: x = Voltage

Packing Options

Product Selector

Part Number	Marking	Weight	Packing Mode	Base Quantity
Sx01E	Sx01E	0.19 g	Bulk	2000
Sx01ERP	Sx01E	0.19 g	Reel Pack	2000
Sx01EAP	Sx01E	0.19 g	Ammo Pack	2000
SxN1RP	SxN1	0.08 g	Embossed Carrier	2500

Note: x = Voltage

TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

Teccor[®] brand Thyristors

1 Amp Standard SCRs

Compak Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-1 Standards

