

MGM12P Wireless Gecko Multi-Protocol Module Data Sheet

The Silicon Labs Wireless Gecko Module (MGM12P) is a fully-integrated, certified module, enabling rapid development of wireless mesh networking solutions.

Based on the Silicon Labs EFR32MG12 Wireless Gecko SoC, the MGM12P combines an energy- efficient, multi-protocol wireless SoC with a proven RF/antenna design and industry leading wireless software stacks. This integration accelerates time-to-market and saves months of engineering effort and development costs.

In addition, common software and development tools enable seamless migration from a module to discrete SoC-based design when the time is right.

MGM12P can be used in a wide variety of applications:

- IoT Multi-Protocol Devices
- Connected Home
- Lighting
- · Health and Wellness
- · Metering
- · Building Automation and Security

KEY FEATURES

- 32-bit ARM[®] Cortex[®]-M4 core at 38.4 MHz maximum operating frequency
- 1 MB of flash and 256 kB of RAM
- ZigBee, Thread, BLE, and multi-protocol support
- Pin-compatible with MGM111 module
- 12-channel Peripheral Reflex System, Low-Energy Sensor Interface & Multichannel Capacitive Sense Interface
- Integrated PA with up to +17 dBm transmit power
- Robust peripheral set and up to 25 GPIO

1. Feature List

The MGM12P highlighted features are listed below.

- Low Power Wireless System-on-Chip.
 - High Performance 32-bit ARM Cortex[®]-M4 core at 38.4 MHz with DSP instruction and floating-point unit for efficient signal processing
 - 1024 kB flash program memory
 - 256 kB RAM data memory
 - 2.4 GHz radio operation
 - TX power up to +17 dBm
- Low Energy Consumption
 - 10.3 mA RX current at 2.4 GHz (1 Mbps GFSK)
 - 10.8 mA RX current at 2.4 GHz (250 kbps O-QPSK DSSS)
 - 10 mA TX current @ 0 dBm output power at 2.4 GHz
 - 70 µA/MHz in Active Mode (EM0)
 - 2.62 µA EM2 DeepSleep current (256 kB RAM retention and RTCC running from LFXO)

High Receiver Performance

- · -102 dBm sensitivity @ 250 kbps O-QPSK DSSS
- -105.7 dBm sensitivity @ 250 kbps O-QPSK DSSS (MGM12P22 and MGM12P32)
- · -94.4 dBm sensitivity @ 1Mbps 2GFSK
- -100.3 dBm sensitivity @ 1Mbps 2GFSK (MGM12P22 and MGM12P32)

Supported Modulation Format

- Shaped OQPSK
- 2-FSK / 4-FSK with fully configurable shaping
- Supported Protocols:
 - Bluetooth[®] Low Energy (Bluetooth 5)
 - zigbee
 - Thread
- Support for Internet Security
 - General Purpose CRC
 - True Random Number Generator
 - Hardware Cryptographic Acceleration for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC

- Wide selection of MCU peripherals
 - 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
 - 2×Analog Comparator (ACMP)
 - 2×Digital to Analog Converter (VDAC)
 - 3×Operational Amplifier (Opamp)
 - Digital to Analog Current Converter (IDAC)
 - Low-Energy Sensor Interface (LESENSE)
 - Multi-channel Capacitive Sense Interface (CSEN)
 - Up to 25 pins connected to analog channels (APORT) shared between analog peripherals
 - Up to 25 General Purpose I/O pins with output state retention and asynchronous interrupts
 - 8 Channel DMA Controller
 - 12 Channel Peripheral Reflex System (PRS)
 - 2×16-bit Timer/Counter
 - 3 + 4 Compare/Capture/PWM channels
 - 2×32-bit Timer/Counter
 - 3 + 4 Compare/Capture/PWM channels
 - 32-bit Real Time Counter and Calendar
 - 16-bit Low Energy Timer for waveform generation
 - 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode
 - 3×16-bit Pulse Counter with asynchronous operation
 - 2×Watchdog Timer with dedicated RC oscillator
 - 4×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I²S)
 - Low Energy UART (LEUART[™])
 - 2×I²C interface with SMBus support and address recognition in EM3 Stop
- Wide Operating Range
 - 1.8 V to 3.8 V single power supply
 - -40 °C to 85 °C
- WxLxH: 12.9 x 17.8 x 2.3 mm

2. Ordering Information

Ordering Code	Description	Max TX Power	Sensitivity (O-QPSK)	Antenna	Packaging	Production Status
MGM12P32F1024GA-V4	Multi-protocol Module	+17 dBm	-105.7 dBm	Integrated chip an- tenna	Cut Tape (100 pcs)	Full Production (certi- fied)
MGM12P32F1024GA-V4R	Multi-protocol Module	+17 dBm	-105.7 dBm	Integrated chip an- tenna	Reel (1000 pcs)	Full Production (certi- fied)
MGM12P32F1024GE-V4	Multi-protocol Module	+17 dBm	-105.7 dBm	External (U.FL)	Cut Tape (100 pcs)	Full Production (certi- fied)
MGM12P32F1024GE-V4R	Multi-protocol Module	+17 dBm	-105.7 dBm	External (U.FL)	Reel (1000 pcs)	Full Production (certi- fied)
MGM12P22F1024GA-V4	Multi-protocol Module	+10 dBm	-105.7 dBm	Integrated chip an- tenna	Cut Tape (100 pcs)	Full Production (certi- fied)
MGM12P22F1024GA-V4R	Multi-protocol Module	+10 dBm	-105.7 dBm	Integrated chip an- tenna	Reel (1000 pcs)	Full Production (certi- fied)
MGM12P22F1024GE-V4	Multi-protocol Module	+10 dBm	-105.7 dBm	External (U.FL)	Cut Tape (100 pcs)	Full Production (certi- fied)
MGM12P22F1024GE-V4R	Multi-protocol Module	+10 dBm	-105.7 dBm	External (U.FL)	Reel (1000 pcs)	Full Production (certi- fied)
MGM12P02F1024GA-V4	Multi-protocol Module	+10 dBm	-102 dBm	Integrated chip an- tenna	Cut Tape (100 pcs)	Full Production (certi- fied)
MGM12P02F1024GA-V4R	Multi-protocol Module	+10 dBm	-102 dBm	Integrated chip an- tenna	Reel (1000 pcs)	Full Production (certi- fied)
MGM12P02F1024GE-V4	Multi-protocol Module	+10 dBm	-102 dBm	External (U.FL)	Cut Tape (100 pcs)	Full Production (certi- fied)
MGM12P02F1024GE-V4R	Multi-protocol Module	+10 dBm	-102 dBm	External (U.FL)	Reel (1000 pcs)	Full Production (certi- fied)
SLWRB4304A	MGM12P Radio Board ²	+17 dBm	-105.7 dBm	Integrated chip an- tenna	Single Unit	Development Board

Note:

1. IAR license required for zigbee and Thread software development.

2. Requires Mesh Networking kit SLWSTK6000A or SLWSTK6000B

Table of Contents

1.	Feature List	. 2
2.	Ordering Information	. 3
3.	System Overview	. 7
	3.1 Introduction	. 7
	3.2 Radio	.7 .8
	3.3 Power	. 9 .10 .10
	3.4 General Purpose Input/Output (GPIO)	
	3.5 Clocking	.11
	3.6 Counters/Timers and PWM. . <td< td=""><td>.12 .12</td></td<>	.12 .12
	3.6.3 Real Time Counter and Calendar (RTCC)	.12 .12 .12
	3.6.7 Watchdog Timer (WDOG). . <td< td=""><td></td></td<>	
	3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART).	.13 .13 .13 .13
	3.8 Security Features	.13 .14 .14
	3.9 Analog. 3.9.1 Analog Port (APORT) 3.9.1 Analog Comparator (ACMP) 3.9.2 Analog Comparator (ACMP) 3.9.2 Analog to Digital Converter (ADC) 3.9.4 Capacitive Sense (CSEN)	.14 .14 .14 .14
	3.9.5 Digital to Analog Current Converter (IDAC)	.15

	3.9.7 Operational Amplifiers	.15
	3.10 Reset Management Unit (RMU)	.15
	3.11 Core and Memory	.15
	3.11.1 Processor Core	.15
	3.11.2 Memory System Controller (MSC)	.15
	3.11.3 Linked Direct Memory Access Controller (LDMA)	.15
	3.12 Memory Map	.16
	3.13 Configuration Summary	.17
4	Electrical Specifications	
••	4.1 Electrical Characteristics	
	4.1.1 Absolute Maximum Ratings	
	4.1.2 General Operating Conditions	
	4.1.3 DC-DC Converter	
	4.1.4 Current Consumption	
	4.1.5 Wake Up Times	
	4.1.6 Brown Out Detector (BOD)	
	4.1.7 Frequency Synthesizer.	
	4.1.8 2.4 GHz RF Transceiver Characteristics	
	4.1.10 Flash Memory Characteristics	
	4.1.10 Hash Memory Characteristics	
	4.1.12 Voltage Monitor (VMON).	
	4.1.12 Voltage Monitor (VMON).	
	4.1.13 Analog Comparator (ACMP)	
	4.1.14 Analog Comparator (ACMP)	
	4.1.16 Current Digital to Analog Converter (IDAC)	
	4.1.17 Capacitive Sense (CSEN)	
	4.1.18 Operational Amplifier (OPAMP)	
	4.1.19 Pulse Counter (PCNT)	
	4.1.20 Analog Port (APORT).	
	4.1.21 I2C	
	4.1.22 USART SPI	
F		
э.	Typical Connection Diagrams Typical Connection Diagrams 5.1 Naturals Connection Diagrams Typical Connection Diagrams	
	5.1 Network Co-Processor (NCP) Application with UART Host	
	5.2 Network Co-Processor (NCP) Application with SPI Host	
	5.3 SoC Application	
6.	Layout Guidelines	. 58
	6.1 Module Placement and Application PCB Layout Guidelines	.58
	6.2 Effect of Plastic and Metal Materials	.59
	6.3 Locating the Module Close to Human Body	.59
	6.4 2D Radiation Pattern Plots	.60
7.	Hardware Design Guidelines	. 62

	7.1 Power Supply Requirements	.62
	7.2 Reset Functions	.62
	7.3 Debug and Firmware Updates	.62
	7.3.1 Programming and Debug Connections	
	7.3.2 Packet Trace Interface (PTI)	
8.	Pin Definitions	. 63
	8.1 Pin Definitions	.63
	8.1.1 GPIO Overview	.65
	8.2 Alternate Functionality Pinout	.66
	8.3 Analog Port (APORT) Client Maps	.77
9.	Package Specifications	. 86
	9.1 MGM12P Package Outline	.86
	9.2 MGM12P Recommended PCB Land Pattern	.87
	9.3 MGM12P Package Marking.	.88
10	. Soldering Recommendations	. 89
11	. Tape and Reel Specifications	. 90
	11.1 Tape and Reel Specification	.90
	11.2 Reel Material and Dimensions	.90
	11.3 Module Orientation and Tap	.91
	11.4 Carrier Tape and Cover Tape Information	.92
12	2. Certifications	. 93
	12.1 CE and UKCA - EU and UK	.93
	12.2 FCC	.93
	12.3 ISEDC	.95
13	B. Revision History	98

3. System Overview

3.1 Introduction

This section provides a brief overview of the MGM12P module architecture including both MCU and RF sub-systems. A detailed functional description of the EFR32MG12 SoC used inside the module is available in the *EFR32MG12 Wireless Gecko Data Sheet* and *EFR32xG12 Wireless Gecko Reference Manual*. A block diagram of the EFR32MG12 SoC is shown in the figure below.

Figure 3.1. Detailed EFR32MG12 Block Diagram

3.2 Radio

The MGM12P modules feature a highly configurable radio transceiver that supports a wide range of wireless protocols including zigbee, Thread, and Bluetooth Low Energy.

3.2.1 Antenna Interface

The MGM12P module family includes options for either a high-performance, integrated chip-antenna (MGM12P-GA) or external antenna (MGM12P-GE) via a U.FL connector. The table below includes performance specifications for the integrated chip antenna.

Parameter	With optimal layout	Note
Efficiency	-1.5 dB to -3 dB	Antenna efficiency, gain and radiation pattern are highly depend-
Peak gain	1.0 dBi	ent on the application PCB layout and mechanical design. Refer to the Layout Guidelines Chapter for PCB layout and antenna in- tegration guidelines for optimal performance. Typical efficiency gain is expected to be between -3.5 dB and -5 dB.

3.2.2 Packet and State Trace

The MGM12P Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features:

- Non-intrusive trace of transmit data, receive data and state information
- · Data observability on a single-pin UART data output, or on a two-pin SPI data output
- · Configurable data output bitrate / baudrate
- · Multiplexed transmitted data, received data and state / meta information in a single serial data stream

3.2.3 Random Number Generator

The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications.

Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.

3.3 Power

The MGM12P has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An integrated DC-DC buck regulator is utilized to further reduce the current consumption.

Figure 3.2. MGM12P Power Block for Modules (+10 dBm)

Figure 3.3. MGM12P Power Block for Modules (+17 dBm)

3.3.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.3.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2, and EM3. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.3.3 Power Domains

The MGM12P has two peripheral power domains for operation in EM2 and lower. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device.

Table 3.2. Peripheral Power Subdomains

Peripheral Power Domain 1	Peripheral Power Domain 2
ACMP0	ACMP1
PCNT0	PCNT1
ADC0	PCNT2
LETIMER0	CSEN
LESENSE	DAC0
APORT	LEUART0
-	12C0
-	I2C1
-	IDAC

3.4 General Purpose Input/Output (GPIO)

MGM12P has 25 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.5 Clocking

3.5.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the MGM12P. Individual enabling and disabling of clocks to all peripheral modules is perfomed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.5.2 Internal Oscillators

The MGM12P fully integrates two crystal oscillators and four RC oscillators, listed below.

- A 38.4MHz high frequency crystal oscillator (HFXO) provides a precise timing reference for the MCU and radio.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire debug port with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.6 Counters/Timers and PWM

3.6.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.6.2 Wide Timer/Counter (WTIMER)

WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.

3.6.3 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes.

3.6.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.6.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.6.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.7 Communications and Other Digital Peripherals

3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.7.3 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.7.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.

Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

3.7.5 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

3.8 Security Features

3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application.

3.8.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.

Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.

The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.

3.8.3 True Random Number Generator (TRNG)

The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).

Note: TRNG operation is only supported at VSCALE2. TRNG cannot be used at VSCALE0.

3.8.4 Security Management Unit (SMU)

The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt.

3.9 Analog

3.9.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.9.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.9.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.9.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.9.5 Digital to Analog Current Converter (IDAC)

The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μ A and 64 μ A with several ranges consisting of various step sizes.

3.9.6 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.9.7 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.10 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the MGM12P. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset and watchdog reset.

3.11 Core and Memory

3.11.1 Processor Core

The ARM Cortex-M4F processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4F RISC processor achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- 1024 KB flash program memory
- 256 KB RAM data memory
- · Configuration and event handling of all modules
- 2-pin Serial-Wire debug interface

3.11.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.11.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-phisticated operations to be implemented.

3.12 Memory Map

The MGM12P memory map is shown in the figures below.

CM4 Peripherals Bit Set (Peripherals / CRYPTO0) Bit Clear (Peripherals / CRYPTO0) Bit-Band (Peripherals / CRYPTO0)	0xffffffe 0xe0100000 0xe00fffff 0xe000000 0xdfffffff 0x460f0400 0x460f03ff 0x460f03ff 0x440f0400 0x440f03ff 0x440f0400 0x440f03ff 0x44000000 0x43ffffff 0x44000000 0x43ffffff 0x42000000 0x41ffffff 0x440f4000		CM4 ROM Table ETM TPIU System Control Space FPB DWT ITM	0xe0100000 0xe00ff000 0xe0042000 0xe0040000 0xe000000 0xe000000 0xe0003000 0xe0002000 0xe0001000 0xe000000
CRYPTO0 Peripherals	0x400f03ff 0x400f0000 0x400effff			0x10040800
SRAM (bit-band)	0×4000000 0×3ffffff 0×24000000 0×23ffffff 0×22000000 0×21ffffff		RAM2 (code space) RAM1 (code space) RAM0	0x10040000 0x10020000
RAM2 (data space)	0x20040800 0x200407ff 0x20040000		(code space) Chip config	0x10000000 0x0fe08400 0x0fe08000
RAM1 (data space)	0x2003ffff 0x20020000 0x2001ffff		Lock bits	0x0fe04800 0x0fe04000 0x0fe00800
RAM0 (data space) Code	0x20000000 0x1fffffff	/	User Data Flash (1024 KB)	0x0fe00000 0x0fe00000 0x00100000
	0×00000000			0×00000000

Figure 3.4. MGM12P Memory Map — Core Peripherals and Code Space

0x400e6000 0x400e5400	PRS	t.		0xfffffffe
0x400e5400 0x400e5000	KMU	1		0×e0100000
0x400e4400 0x400e4000	СМО	\ \		0xe00fffff
0x400e4000 0x400e4000 0x400e3400 0x400e3000 0x400e3000 0x400e2000 0x400e1400 0x400e1000	EMU LDMA		CM4 Peripherals	0×e0000000
0x400e2000 0x400e1400				0xdfffffff
0x400e1000	FPUEH	' \		0×460f0400
0x400e0800 0x400e0000 0x40088400 0x40088400	MSC			0x460f03ff
0x40088000	RESENSE		Bit Set (Peripherals / CRYPTOO)	
0x40087000	AGC		(renpierus / extrited)	0×46000000
0x400887400 0x40087400 0x40086800 0x40086000 0x40085400 0x40085000 0x40084400 0x40084400 0x40084400	MODEM	\ \		0x45ffffff
0x40085000	PROTIMER			0×440f0400
0x40084400	RAC			0x440f03ff
0x400834000 0x40083400 0x40082400 0x40082400 0x40082000	SYNTH		Bit Clear (Peripherals / CRYPTO0)	
0x40082400 0x40082000	CRC		(i cripitelais) etti i ee,	0×44000000
0x40082000 0x40081000 0x40081000 0x40080400 0x40055400 0x40055000	BUFC			0x43ffffff
0x40080400 0x40080000	FRC			0x43e08000
0x40055400 0x40055000	LESENSE		Dit Dead	0x43e07fff
0x40052800 0x40052400	WDOG1		Bit-Band (Peripherals / CRYPTO0)	
0x40052000 0x4004ec00	WDOGO			0×42000000
0x4004e800 0x4004e400	PCN12 PCN11	1		0x41ffffff
0x4004e000	PCNTO			0x400f0400
0x40052800 0x40052400 0x4004ec00 0x4004ec00 0x4004e800 0x4004e400 0x4004e000 0x4004a000 0x4004a000 0x4004a000 0x40046000 0x40046000 0x40042000 0x40042000	LEUARTO	\ \	CRYPTO0	0x400f03ff
0x40046000	LETIMERO			0×400f0000
0x40042000	RICC		Peripherals	0x400effff
0x40022400 0x40022000	SMU			0×40000000
0x4001f400 0x4001f000	CSEN	/		0x3fffffff
0x4001e400 0x4001e000	CRYOTIMER			0×24000000
0x4001d400 0x4001d000 0x4001c400 0x4001c000	TRNG0	/	SRAM (bit-band)	0x23ffffff
0x4001c000	GPCRC			0x22000000
0x4001a800 0x4001a400 0x4001a000	WIIMER1 WIIMER0			0x21ffffff
0x40018800 0x40018800 0x40018400	IIMER1	/		0x20040800 0x200407ff
0x40018400	IIMERO	/	RAM2 (data space)	
0x40018000 0x40011000 0x40010c00	USARI3 USARI2			0x20040000 0x2003ffff
0x40010800 0x40010400	USARI I USARI USARI USA		RAM1 (data space)	
0x40010800 0x40010400 0x40010000 0x40010000 0x4000c800	201			0x20020000 0x2001ffff
0x4000c400	200		RAM0 (data space)	
0x4000b000 0x4000a000	GPIO	1		0x20000000 0x1fffffff
0x4000b000 0x4000a000 0x40008400 0x40008000	VDACU			VALITITITI
0x40006400 0x40006000	IDAC0		Code	
0×40002400	ADCU		coue	
0x40002000 0x40000800 0x40000400 0x40000400 0x40000000	ACMP1	1		0×00000000
ŏx4ŏŏŏŏŏŏŏŏ	ACMP0	r		0.0000000

Figure 3.5. MGM12P Memory Map — Peripherals

3.13 Configuration Summary

The features of the MGM12P are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.3. Configuration Summary

Module	Configuration	Pin Connections
USART0	IrDA SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	IrDA I ² S SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	IrDA SmartCard	US2_TX, US2_RX, US2_CLK, US2_CS
USART3	IrDA I ² S SmartCard	US3_TX, US3_RX, US3_CLK, US3_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	-	TIM1_CC[3:0]
WTIMER0	with DTI	WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1	-	WTIM1_CC[3:0]

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB}=25 °C and V_{DD}= 3.3 V, by production test and/or technology characterization.
- · Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to Figure 3.2 MGM12P Power Block for Modules (+10 dBm) on page 9 and Figure 3.3 MGM12P Power Block for Modules (+17 dBm) on page 10 to see the relation between the modules external VDD pin and internal voltage supplies. The module has only one external power supply input (VDD).

Refer to 4.1.2 General Operating Conditions for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Storage temperature range	T _{STG}		-40		85	°C
Voltage on any supply pin	V _{DDMAX}		-0.3	_	3.8	V
Voltage ramp rate on any supply pin	VDDRAMPMAX		-	_	1	V / µs
DC Voltage on any over-volt- age tolerant GPIO pin ¹	V _{DIGPIN}		-0.3	—	Min of 5.25 and IOVDD +2	V
			-0.3	_	IOVDD+0.3	V
Input RF level	P _{RFMAX2G4}			_	-2	dBm
Current per I/O pin	I _{IOMAX}	Sink	_		50	mA
		Source			50	mA
Current for all I/O pins	IIOALLMAX	Sink		_	200	mA
		Source	_		200	mA

Table 4.1. Absolute Maximum Ratings

1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.

4.1.2 General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Ambient tempera- ture range	T _A	-G temperature grade	-40	25	85	°C
VDD supply voltage ¹	V _{VDD}	DCDC in regulation	2.4	3.3	3.8	V
		DCDC in bypass 50mA load	1.8	3.3	3.8	V
Core Clock Frequency	f _{CORE}	FWAIT = 1, VSCALE2	_	—	40	MHz
		FWAIT = 0, VSCALE0	_	_	20	MHz

Table 4.2. General Operating Conditions

Note:

1. The minimum voltage required in bypass mode is calculated using R_{BYP} from the DCDC specification table. Requirements for other loads can be calculated as V_{DVDD_min}+I_{LOAD} * R_{BYP_max}.

4.1.3 DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{DCDC_I}	Bypass mode, I _{DCDC_LOAD} = 50 mA	1.8	—	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, $I_{DCDC_LOAD} = 100$ mA, or Low power (LP) mode, 1.8 V out- put, $I_{DCDC_LOAD} = 10$ mA	2.4	_	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, I _{DCDC_LOAD} = 200 mA	2.6	—	V _{VREGVDD} MAX	V
Output voltage programma- ble range ¹	V _{DCDC_O}		1.8	—	V _{VREGVDD}	V
Max load current	ILOAD_MAX	Low noise (LN) mode, Medium Drive ²	_		100	mA
		Low noise (LN) mode, Light Drive ²	_	_	50	mA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 0	_	_	75	μA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 3	_	_	10	mA

Table 4.3. DC-DC Converter

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V_{VDD}

2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.

3. In EMU_DCDCMISCCTRL register

4.1.4 Current Consumption

4.1.4.1 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VDD = 3.3 V, DC-DC enabled. T_{OP} = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T_{OP} = 25 °C.

Table 4.4. Current Consumption 3.3 V using DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	38.4 MHz crystal, CPU running while loop from flash ⁴	-	88	—	µA/MHz
abled, DCDC in Low Noise DCM mode ² .		38 MHz HFRCO, CPU running Prime from flash	_	70	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	70	_	µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	85	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	77	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	636	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE_CCM}	38.4 MHz crystal, CPU running while loop from flash ⁴	_	98	_	µA/MHz
abled, DCDC in Low Noise CCM mode ¹ .		38 MHz HFRCO, CPU running Prime from flash	_	81	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	82		µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	95	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	95	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	1155	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM_VS	19 MHz HFRCO, CPU running while loop from flash	_	101	_	µA/MHz
abled and voltage scaling enabled, DCDC in Low Noise CCM mode ¹ .		1 MHz HFRCO, CPU running while loop from flash	_	1155	_	µA/MHz
Current consumption in EM1	I _{EM1_DCM}	38.4 MHz crystal ⁴	_	59		µA/MHz
mode with all peripherals dis- abled, DCDC in Low Noise		38 MHz HFRCO	_	41		µA/MHz
DCM mode ² .		26 MHz HFRCO	_	48	_	µA/MHz
		1 MHz HFRCO	_	610		µA/MHz
Current consumption in EM1	I _{EM1_DCM_VS}	19 MHz HFRCO	_	52		µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled, DCDC in Low Noise DCM mode ² .		1 MHz HFRCO	-	587	_	µA/MHz

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM2 mode, with votage scaling enabled, DCDC in LP mode. 3	I _{EM2_VS}	Full 256 kB RAM retention and RTCC running from LFXO	_	2.62	_	μA
Current consumption in EM3 mode, with voltage scaling enabled.	IEM3_VS	Full 256 kB RAM retention and CRYOTIMER running from ULFR- CO	_	2.33	_	μA
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	1.21	_	μA
scaling enabled.		128 byte RAM retention, CRYO- TIMER running from ULFRCO	_	0.91	_	μA
		128 byte RAM retention, no RTCC	_	0.91	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	_	0.58	_	μA

Note:

1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-SEL=1, ANASW=DVDD.

4. CMU_HFXOCTRL_LOWPOWER=0.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.4.2 Current Consumption Using Radio 3.3 V with DC-DC

Unless otherwise indicated, typical conditions are: VDD = 3.3 V, DC-DC enabled. T_{OP} = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T_{OP} = 25 °C.

Table 4.5.	Current Consumption Using Radio 3.3 V with DC-DC
------------	--

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in re- ceive mode, active packet	I _{RX_ACTIVE}	1 Mbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4	_	10.3	_	mA
reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled).		2 Mbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4	—	11.5	_	mA
LNA in bypass.		802.15.4 receiving frame, F = 2.4 GHz, Radio clock prescaled by 3	_	10.8	_	mA
Current consumption in re- ceive mode, listening for	I _{RX_LISTEN}	1 Mbit/s, 2GFSK, F = 2.4 GHz, No radio clock prescaling	—	11.6	_	mA
packet (MCU in EM1 @ 38.4 MHz, peripheral clocks disa- bled)		2 Mbit/s, 2GFSK, F = 2.4 GHz, No radio clock prescaling	—	12.6	_	mA
LNA in bypass.		802.15.4, F = 2.4 GHz, No radio clock prescaling	—	12.3	_	mA
Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral	I _{TX}	F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 1 (MGM12P02)	—	10	_	mA
clocks disabled) LNA in bypass.		F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 1 (MGM12P22)	_	15.8	_	
		F = 2.4 GHz, CW, 8 dBm output power (MGM12P02)	—	27.1	_	mA
		F = 2.4 GHz, CW, 8 dBm output power (MGM12P22)	—	31.8	_	mA
		F = 2.4 GHz, CW, 10.0 dBm out- put power (MGM12P02)	—	35.4	_	mA
		F = 2.4 GHz, CW, 10.0 dBm out- put power (MGM12P22)	_	39.2	_	mA
		F = 2.4 GHz, CW, 17.0 dBm out- put power, PAVDD connected di- rectly to VDD (MGM12P32)	_	121	_	mA

4.1.5 Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Wake up time from EM1	t _{EM1_WU}		_	3	_	AHB Clocks
Wake up from EM2	t _{EM2_WU}	Code execution from flash		10.1		μs
		Code execution from RAM	_	3.2	_	μs
Wake up from EM3	t _{EM3_WU}	Code execution from flash	_	10.1	_	μs
		Code execution from RAM	_	3.2	_	μs
Wake up from EM4H ¹	t _{EM4H_WU}	Executing from flash		80	_	μs
Wake up from EM4S ¹	t _{EM4S_WU}	Executing from flash		291	_	μs
Time from release of reset	t _{RESET}	Soft Pin Reset released	_	43	_	μs
source to first instruction ex- ecution		Any other reset released	_	350	_	μs
Power mode scaling time	t _{SCALE}	VSCALE0 to VSCALE2, HFCLK = 19 MHz ^{2 3}	_	31.8		μs
	VSCALE2 to VSCALE0, HF 19 MHz ⁴	VSCALE2 to VSCALE0, HFCLK = 19 MHz ⁴	_	4.3	_	μs

Table 4.6. Wake Up Times

Note:

1. Time from wake up request until first instruction is executed. Wakeup results in device reset.

2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.

3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/μs for approximately 20 μs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA (with a 2.7 μF capacitor).

4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.

4.1.6 Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
DVDD BOD threshold	V _{DVDDBOD}	DVDD rising	_	_	1.62	V
		DVDD falling (EM0/EM1)	1.35	_	_	V
		DVDD falling (EM2/EM3)	1.3	_	_	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		_	18	_	mV
DVDD BOD response time	t _{DVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	—	2.4		μs
AVDD BOD threshold	V _{AVDDBOD}	AVDD rising	_		1.8	V
		AVDD falling (EM0/EM1)	1.62		_	V
		AVDD falling (EM2/EM3)	1.53	_	_	V
AVDD BOD hysteresis	V _{AVDDBOD_HYST}		_	20	_	mV
AVDD BOD response time	t _{AVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4	_	μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	_		1.7	V
		AVDD falling	1.45	_	_	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}		_	25	_	mV
EM4 BOD response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	-	300	_	μs

Table 4.7. Brown Out Detector (BOD)

4.1.7 Frequency Synthesizer

Table 4.8. Frequency Synthesizer

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
RF Synthesizer Frequency range	f _{RANGE}	2400 - 2483.5 MHz	2400	_	2483.5	MHz
LO tuning frequency resolu- tion with 38.4 MHz crystal	f _{RES}	2400 - 2483.5 MHz			73	Hz
Frequency deviation resolu- tion with 38.4 MHz crystal	df _{RES}	2400 - 2483.5 MHz			73	Hz
Maximum frequency devia- tion with 38.4 MHz crystal	df _{MAX}	2400 - 2483.5 MHz			1677	kHz

4.1.8 2.4 GHz RF Transceiver Characteristics

4.1.8.1 RF Transmitter General Characteristics for 2.4 GHz Band

Unless otherwise indicated, typical conditions are: T_{OP} = 25 °C, VDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.

Table 4.9. RF	Transmitter	General	Characteristics	for 2.4 GHz Band
---------------	-------------	---------	-----------------	------------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Maximum TX power ¹	POUT _{MAX}	17 dBm-rated part numbers. PAVDD connected directly to VDD ² (MGM12P32)	_	17	_	dBm
		10 dBm-rated part numbers (MGM12P02 & MGM12P22)		10	_	dBm
Minimum active TX Power	POUT _{MIN}	CW		-30	_	dBm
Output power step size	POUT _{STEP}	-5 dBm< Output power < 0 dBm	_	1	_	dB
		0 dBm < output power < POUT _{MAX}		0.5	_	dB
Output power variation vs supply at POUT _{MAX}	POUT _{VAR_V}	1.8 V < V _{VREGVDD} < 3.8 V, PAVDD connected directly to VDD, for output power > 10 dBm.	_	5.7	_	dB
		1.8 V < V _{VREGVDD} < 3.8 V using DC-DC converter		3.4	_	dB
Output power variation vs temperature at POUT _{MAX}	POUT _{VAR_T}	From -40 to +85 °C, PAVDD con- nected to DC-DC output	_	1.5	-	dB
		From -40 to +85 °C, PAVDD con- nected to VDD	_	1.5	-	dB
Output power variation vs RF frequency at POUT _{MAX}	POUT _{VAR_F}	Over RF tuning frequency range		0.2	-	dB
RF tuning frequency range	F _{RANGE}		2400	_	2483.5	MHz

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.

2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions.

4.1.8.2 RF Receiver General Characteristics for 2.4 GHz Band

Unless otherwise indicated, typical conditions are: T_{OP} = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RF tuning frequency range	F _{RANGE}		2400	_	2483.5	MHz
Receive mode maximum	SPUR _{RX}	30 MHz to 1 GHz	—	-57	—	dBm
spurious emission		1 GHz to 12 GHz	_	-47	_	dBm
Max spurious emissions dur- ing active receive mode, per	SPUR _{RX_FCC}	216 MHz to 960 MHz, Conducted Measurement	—	-55.2	_	dBm
FCC Part 15.109(a)		Above 960 MHz, Conducted Measurement	_	-47.2	_	dBm

Table 4.10. RF Receiver General Characteristics for 2.4 GHz Band

4.1.8.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz.

Table 4.11. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Sensitivity, 0.1% BER	SENS	Signal is reference signal ¹ . Using DC-DC converter. (MGM12P02)	_	-94.4	_	dBm
		With non-ideal signal. Using DC- DC converter. (MGM12P02)	_	-94.3	_	dBm
		Signal is reference signal. ¹ Using DC-DC converter.	_	-100.3	_	dBm
		(MGM12P22 & MGM12P32)				
		With non-ideal signal. Using DC- DC converter. (MGM12P22 & MGM12P32)	_	-100.1	_	dBm

Note:

1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9, Packet length = 37 bytes; interferer data = PRBS15; frequency accuracy better than 1 ppm.

4.1.8.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz.1

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Sensitivity, 0.1% BER	SENS	Signal is reference signal ¹ . Using DC-DC converter.	—	-91	_	dBm
		With non-ideal signal. Using DC- DC converter. (MGM12P02)		-90.8	_	dBm
		Signal is reference signal. ¹ Using DC-DC converter.	—	-97	_	dBm
		(MGM12P22 & MGM12P32)				
		With non-ideal signal. Using DC- DC converter. (MGM12P22 & MGM12P32)	_	-96.7	_	dBm

Table 4.12. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate

Note:

1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 2 Mbps, desired data = PRBS9, Packet length = 37 bytes; interferer data = PRBS15; frequency accuracy better than 1 ppm.

4.1.8.5 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: T_{OP} = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.

Table 4.13. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Sensitivity, 1% PER	SENS	Signal is reference signal. ¹ Using DC-DC converter.	—	-102	—	dBm
		Signal is reference signal. Using DC-DC converter.	_	-105.7	_	dBm
		(MGM12P22 & MGM12P32)				

Note:

1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s, Packet length = 20 bytes.

4.1.9 Current Consumption

4.1.9.1 Low-Frequency Crystal Oscillator (LFXO)

Table 4.14. Low-Frequency Crystal Oscillator (LFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{LFXO}		_	32.768	_	kHz
Crystal Frequency Tolerance			-100		+100	ppm

4.1.9.2 High-Frequency Crystal Oscillator (HFXO)

Table 4.15. High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Crystal Frequency	f _{HFXO}			38.4		MHz
Frequency Tolerance for the crystal	FT _{HFXO}		-40	_	40	ppm

4.1.9.3 Low-Frequency RC Oscillator (LFRCO)

Table 4.16. Low-Frequency RC Oscillator (LFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	f _{LFRCO}	ENVREF ¹ = 1	31.3	32.768	33.6	kHz
		ENVREF ¹ = 0	31.3	32.768	33.4	kHz
Startup time	t _{LFRCO}		_	500	_	μs
Current consumption ²	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	_	370	_	nA
		ENVREF = 0 in CMU_LFRCOCTRL	_	520		nA

Note:

1. In CMU_LFRCOCTRL register.

2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	fHFRCO_ACC	At production calibrated frequen- cies, across supply voltage and temperature	-2.5	_	2.5	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz	—	300	_	ns
		4 < f _{HFRCO} < 19 MHz	—	1	_	μs
		f _{HFRCO} ≤ 4 MHz	—	2.5	_	μs
Current consumption on all	I _{HFRCO}	f _{HFRCO} = 38 MHz	—	244	265	μA
supplies		f _{HFRCO} = 32 MHz	—	204	222	μA
		f _{HFRCO} = 26 MHz	—	173	188	μA
		f _{HFRCO} = 19 MHz	_	143	156	μA
		f _{HFRCO} = 16 MHz	_	123	136	μA
		f _{HFRCO} = 13 MHz	—	110	124	μA
		f _{HFRCO} = 7 MHz	—	85	94	μA
		f _{HFRCO} = 4 MHz	_	32	37	μA
		f _{HFRCO} = 2 MHz	—	28	34	μA
		f _{HFRCO} = 1 MHz	—	26	31	μA
Coarse trim step size (% of period)	SS _{HFRCO_COARS}		_	0.8	_	%
Fine trim step size (% of pe- riod)	SS _{HFRCO_FINE}		_	0.1	_	%
Period jitter	PJ _{HFRCO}		_	0.2	_	% RMS

Table 4.17. High-Frequency RC Oscillator (HFRCO)

4.1.9.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	fauxhfrco_acc	At production calibrated frequen- cies, across supply voltage and temperature	-3	_	3	%
Start-up time	t _{AUXHFRCO}	f _{AUXHFRCO} ≥ 19 MHz	_	400	_	ns
		4 < f _{AUXHFRCO} < 19 MHz	_	1.4	—	μs
		f _{AUXHFRCO} ≤ 4 MHz	_	2.5	—	μs
Current consumption on all supplies	I _{AUXHFRCO}	f _{AUXHFRCO} = 38 MHz	_	193	213	μA
		f _{AUXHFRCO} = 32 MHz	—	157	175	μA
		f _{AUXHFRCO} = 26 MHz	_	135	151	μA
		f _{AUXHFRCO} = 19 MHz	—	108	122	μA
		f _{AUXHFRCO} = 16 MHz	_	100	113	μA
		f _{AUXHFRCO} = 13 MHz	_	77	88	μA
		f _{AUXHFRCO} = 7 MHz	—	53	63	μA
		f _{AUXHFRCO} = 4 MHz	—	29	36	μA
		f _{AUXHFRCO} = 2 MHz	—	28	34	μA
		f _{AUXHFRCO} = 1 MHz	_	27	31	μA
Coarse trim step size (% of period)	SS _{AUXHFR} - CO_COARSE		_	0.8	_	%
Fine trim step size (% of pe- riod)	SS _{AUXHFR-} CO_FINE		_	0.1	-	%
Period jitter	PJ _{AUXHFRCO}		_	0.2	_	% RMS

Table 4.18. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

4.1.9.6 Ultra-low Frequency RC Oscillator (ULFRCO)

Table 4.19. Ultra-low Frequency RC Oscillator (ULFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{ULFRCO}		0.95	1	1.07	kHz

4.1.10 Flash Memory Characteristics¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Flash erase cycles before failure	EC _{FLASH}		10000	_	_	cycles
Flash data retention	RET _{FLASH}		10	_	_	years
Word (32-bit) programming time	t _{W_PROG}	Burst write, 128 words, average time per word	20	24.4	30	μs
		Single word	60	68.4	80	μs
Page erase time ²	tPERASE		20	26.4	35	ms
Mass erase time ³	t _{MERASE}		20	26.5	35	ms
Device erase time ^{4 5}	t _{DERASE}		_	82	100	ms
Erase current ⁶	I _{ERASE}	Page Erase	_		1.6	mA
Write current ⁶	I _{WRITE}		_		3.8	mA
Supply voltage during flash erase and write	V _{FLASH}		1.62		3.6	V

Table 4.20. Flash Memory Characteristics¹

Note:

1. Flash data retention information is published in the Quarterly Quality and Reliability Report.

2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.

3. Mass erase is issued by the CPU and erases all flash.

4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW).

5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.

6. Measured at 25 °C.

4.1.11 General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Input low voltage ¹	V _{IL}	GPIO pins	_		IOVDD*0.3	V
		RESETn	_	_	AVDD*0.3	V
Input high voltage ¹	VIH	GPIO pins	IOVDD*0.7	_	—	V
		RESETn	AVDD*0.7	_	_	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD \ge 3 V,	IOVDD*0.8	—	_	V
to IOVDD		DRIVESTRENGTH ² = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ² = WEAK				
		Sourcing 20 mA, IOVDD ≥ 3 V,	IOVDD*0.8	_	_	V
		DRIVESTRENGTH ² = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ² = STRONG				
Output low voltage relative to	V _{OL}	Sinking 3 mA, IOVDD ≥ 3 V,	_		IOVDD*0.2	V
IOVDD		DRIVESTRENGTH ² = WEAK				
		Sinking 1.2 mA, IOVDD \ge 1.62 V,	_	_	IOVDD*0.4	V
		DRIVESTRENGTH ² = WEAK				
		Sinking 20 mA, IOVDD ≥ 3 V,	_	_	IOVDD*0.2	V
		DRIVESTRENGTH ² = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		DRIVESTRENGTH ² = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD	_	0.1	30	nA
		LFXO Pins, GPIO ≤ IOVDD	_	0.1	50	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V		3.3	15	μA
I/O pin pull-up/pull-down re- sistor ³	R _{PUD}		30	40	65	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	t _{IOGLITCH}		15	25	45	ns

Table 4.21. General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output fall time, From 70%	t _{IOOF}	C _L = 50 pF,		1.8		ns
to 30% of V _{IO}		DRIVESTRENGTH ² = STRONG,				
		SLEWRATE ² = 0x6				
		C _L = 50 pF,	_	4.5	_	ns
		DRIVESTRENGTH ² = WEAK,				
		SLEWRATE ² = 0x6				
Output rise time, From 30%	t _{IOOR}	C _L = 50 pF,		2.2		ns
to 70% of V_{IO}		DRIVESTRENGTH ² = STRONG,				
		SLEWRATE = 0x6 ²				
		C _L = 50 pF,		7.4		ns
		DRIVESTRENGTH ² = WEAK,				
		SLEWRATE ² = 0x6				
RESETn low time to ensure pin reset	T _{RESET}		100	-	_	ns

Note:

1. GPIO input threshold are proportional to the IOVDD supply, except for RESETn which is proportional to AVDD.

2. In GPIO_Pn_CTRL register.

3. GPIO pull-ups are referenced to the IOVDD supply, except for RESETn, which connects to AVDD.

4.1.12 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including	I _{VMON}	In EM0 or EM1, 1 active channel	_	6.3	10	μA
I_SENSE)		In EM0 or EM1, All channels ac- tive	—	12.5	17	μA
		In EM2, EM3 or EM4, 1 channel active and above threshold	—	62	_	nA
		In EM2, EM3 or EM4, 1 channel active and below threshold	—	62	—	nA
		In EM2, EM3 or EM4, All channels active and above threshold	—	99		nA
		In EM2, EM3 or EM4, All channels active and below threshold	—	99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	_	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200	_	mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}		_	26	_	mV

Table 4.22. Voltage Monitor (VMON)

4.1.13 Analog to Digital Converter (ADC)

Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.

Table 4.23. Analog to Digital Converter (ADC)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	VRESOLUTION		6		12	Bits
Input voltage range ¹	V _{ADCIN}	Single ended	—	_	V _{FS}	V
		Differential	-V _{FS} /2		V _{FS} /2	V
Input range of external refer- ence voltage, single ended and differential	V _{ADCREFIN_P}		1	_	V _{AVDD}	V
Power supply rejection ²	PSRR _{ADC}	At DC	_	80	-	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	_	80	-	dB
Current from all supplies, us- ing internal reference buffer. Continuous operation. WAR- MUPMODE ³ = KEEPADC- WARM	I _{ADC_CONTINU-} OUS_LP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	—	270	315	μA
		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ⁴	_	125	-	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 1 ⁴	_	80	-	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation. WAR- MUPMODE ³ = NORMAL	IADC_NORMAL_LP	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	_	45	-	μA
		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 1 ⁴	_	8	-	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation. AWARMUPMODE ³ = KEEP- INSTANDBY or KEEPIN- SLOWACC	IADC_STAND- BY_LP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	_	105	-	μA
		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ⁴	_	70	-	μA
Current from all supplies, us- ing internal reference buffer. Continuous operation. WAR- MUPMODE ³ = KEEPADC- WARM	IADC_CONTINU- OUS_HP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	_	325	-	μA
		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 0 ⁴	_	175	-	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 0 ⁴	_	125	-	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation. WAR- MUPMODE ³ = NORMAL	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	_	85	-	μA
		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 0 ⁴	_	16	-	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation. AWARMUPMODE ³ = KEEP- INSTANDBY or KEEPIN- SLOWACC	I _{ADC_STAND} - BY_HP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	_	160	-	μA
		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ⁴	_	125	-	μA
Current from HFPERCLK	IADC_CLK	HFPERCLK = 16 MHz	_	160	_	μA

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ADC clock frequency	f _{ADCCLK}		_	—	16	MHz
Throughput rate	f _{ADCRATE}		_	_	1	Msps
Conversion time ⁵	t _{ADCCONV}	6 bit	_	7	_	cycles
		8 bit	_	9	_	cycles
		12 bit	_	13	_	cycles
Startup time of reference generator and ADC core	tadcstart	WARMUPMODE ³ = NORMAL	—	—	5	μs
		WARMUPMODE ³ = KEEPIN- STANDBY	_	_	2	μs
		WARMUPMODE ³ = KEEPINSLO- WACC	_	_	1	μs
SNDR at 1Msps and f _{IN} = 10kHz	SNDR _{ADC}	Internal reference ⁶ , differential measurement	58	67	_	dB
		External reference ⁷ , differential measurement	_	68	_	dB
Spurious-free dynamic range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	_	75	_	dB
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No missing co- des	-1	_	2	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	-6	_	6	LSB
Offset error	VADCOFFSETERR		-3	0	3	LSB
Gain error in ADC	VADCGAIN	Using internal reference	_	-0.2	3.5	%
		Using external reference		-1	_	%
Temperature sensor slope	V _{TS_SLOPE}		—	-1.84	_	mV/°C

Note:

1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on ENUL DV/DD - ANA 200). Any ADC inputs are tagted to the ADC supply (AVDD or DVDD depending on ENUL DV/DD - ANA 200).

EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.

- 3. In ADCn_CTRL register.
- 4. In ADCn_BIASPROG register.
- 5. Derived from ADCCLK.

6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V.
4.1.14 Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Input voltage range	V _{ACMPIN}	ACMPVDD = ACMPn_CTRL_PWRSEL ¹	_	_	V _{ACMPVDD}	V
Supply voltage	VACMPVDD	BIASPROG ² \leq 0x10 or FULL- BIAS ² = 0	1.8	_	V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^2 \le 0x20$ and FULLBIAS ² = 1	2.1	_	V _{VREGVDD} MAX	V
Active current not including voltage reference ³	I _{ACMP}	$BIASPROG^{2} = 0x10, FULLBIAS^{2} = 0$	_	306	-	nA
		$BIASPROG^{2} = 0x02, FULLBIAS^{2} = 1$	_	6.5	-	μA
		$BIASPROG^{2} = 0x20, FULLBIAS^{2} = 1$		75	92	μA
Current consumption of inter- nal voltage reference ³	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	_	50	_	nA
		VLP selected as input using VDD	_	20	—	nA
		VBDIV selected as input using 1.25 V reference / 1	_	4.1	-	μA
		VADIV selected as input using VDD/1	_	2.4	-	μA
Hysteresis (V _{CM} = 1.25 V,	Vacmphyst	HYSTSEL ⁴ = HYST0	-3	0	3	mV
$BIASPROG^2 = 0x10, FULL-BIAS^2 = 1)$		HYSTSEL ⁴ = HYST1	5	18	27	mV
		HYSTSEL ⁴ = HYST2	12	33	50	mV
		HYSTSEL ⁴ = HYST3	17	46	67	mV
		HYSTSEL ⁴ = HYST4	23	57	86	mV
		HYSTSEL ⁴ = HYST5	26	68	104	mV
		HYSTSEL ⁴ = HYST6	30	79	130	mV
		HYSTSEL ⁴ = HYST7	34	90	150	mV
		HYSTSEL ⁴ = HYST8	-3	0	3	mV
		HYSTSEL ⁴ = HYST9	-27	-18	-5	mV
		HYSTSEL ⁴ = HYST10	-50	-33	-12	mV
		HYSTSEL ⁴ = HYST11	-67	-45	-17	mV
		HYSTSEL ⁴ = HYST12	-86	-57	-23	mV
		HYSTSEL ⁴ = HYST13	-104	-67	-26	mV
		HYSTSEL ⁴ = HYST14	-130	-78	-30	mV
		HYSTSEL ⁴ = HYST15	-155	-88	-34	mV

Table 4.24. Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Comparator delay ⁵	t _{ACMPDELAY}	$BIASPROG^{2} = 0x10, FULLBIAS^{2} = 0$	_	3.7	_	μs
		BIASPROG ² = 0x02, FULLBIAS ² = 1	_	360	_	ns
		BIASPROG ² = 0x20, FULLBIAS ² = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ² =0x10, FULLBIAS ² = 1	-35	_	35	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	1	1.25	1.47	V
		Internal 2.5 V reference	2	2.5	2.8	V
Capacitive sense internal re-	R _{CSRES}	CSRESSEL ⁶ = 0	_	infinite	_	kΩ
sistance		CSRESSEL ⁶ = 1	_	15	_	kΩ
		CSRESSEL ⁶ = 2	_	27	_	kΩ
		CSRESSEL ⁶ = 3	_	39	_	kΩ
		CSRESSEL ⁶ = 4	_	51	_	kΩ
		CSRESSEL ⁶ = 5	_	100	-	kΩ
		CSRESSEL ⁶ = 6	—	162	-	kΩ
		CSRESSEL ⁶ = 7	_	235	_	kΩ

Note:

1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.

2. In ACMPn_CTRL register.

3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. $I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$.

4. In ACMPn_HYSTERESIS registers.

5. ± 100 mV differential drive.

6. In ACMPn_INPUTSEL register.

4.1.15 Digital to Analog Converter (VDAC)

DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.

Table 4.25.	Digital to	Analog	Converter	(VDAC)
-------------	------------	--------	-----------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage	V _{DACOUT}	Single-Ended	0	_	V _{VREF}	V
		Differential ¹	-V _{VREF}	_	V _{VREF}	V
Current consumption includ- ing references (2 channels) ²	IDAC	500 ksps, 12-bit, DRIVES- TRENGTH = 2, REFSEL = 4		396	_	μA
		44.1 ksps, 12-bit, DRIVES- TRENGTH = 1, REFSEL = 4		72	_	μΑ
		200 Hz refresh rate, 12-bit Sam- ple-Off mode in EM2, DRIVES- TRENGTH = 2, REFSEL = 4, SETTLETIME = 0x02, WARMUP- TIME = 0x0A		1.2	_	μA
Current from HFPERCLK ³	IDAC_CLK		_	5.8	_	µA/MHz
Sample rate	SR _{DAC}		_	_	500	ksps
DAC clock frequency	f _{DAC}		_	_	1	MHz
Conversion time	t _{DACCONV}	f _{DAC} = 1MHz	2		_	μs
Settling time	t _{DACSETTLE}	50% fs step settling to 5 LSB	_	2.5	_	μs
Startup time	t _{DACSTARTUP}	Enable to 90% fs output, settling to 10 LSB	_		12	μs
Output impedance	R _{OUT}	$\label{eq:DRIVESTRENGTH} \begin{array}{l} DRIVESTRENGTH = 2,0.4V \leq \\ V_{OUT} \leq V_{OPA} - 0.4V,-8mA < \\ I_{OUT} < 8mA,Full supply range \end{array}$	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Full supply range	_	2	_	Ω
		DRIVESTRENGTH = 2, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -2 mA $<$ I _{OUT} $<$ 2 mA, Full supply range	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Full supply range		2	_	Ω
Power supply rejection ratio ⁴	PSRR	Vout = 50% fs. DC	_	65.5	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ratio (1 kHz sine wave),	SNDR _{DAC}	500 ksps, single-ended, internal 1.25V reference	_	60.4	_	dB
Noise band limited to 250 kHz		500 ksps, single-ended, internal 2.5V reference	—	61.6	_	dB
		500 ksps, single-ended, 3.3V VDD reference	_	64.0	—	dB
Signal to noise and distortion ratio (1 kHz sine wave),		500 ksps, differential, internal 1.25V reference	_	63.3	—	dB
		500 ksps, differential, internal 2.5V reference	_	64.4		dB
		500 ksps, differential, 3.3V VDD reference	_	65.8		dB
	SNDR _{DAC_BAND}	500 ksps, single-ended, internal 1.25V reference	_	65.3	—	dB
Noise band limited to 22 kHz		500 ksps, single-ended, internal 2.5V reference	—	66.7	—	dB
		500 ksps, single-ended, 3.3V VDD reference	_	70.0	—	dB
		500 ksps, differential, internal 1.25V reference	_	67.8	_	dB
		500 ksps, differential, internal 2.5V reference	_	69.0	_	dB
		500 ksps, differential, 3.3V VDD reference	_	68.5	_	dB
Total harmonic distortion	THD		_	70.2	_	dB
Differential non-linearity ⁵	DNL _{DAC}		-0.99	—	1	LSB
Intergral non-linearity	INL _{DAC}		-4	—	4	LSB
Offset error ⁶	V _{OFFSET}	T = 25 °C	-8		8	mV
		Across operating temperature range	-25		25	mV
Gain error ⁶	V _{GAIN}	T = 25 °C, Low-noise internal ref- erence (REFSEL = 1V25LN or 2V5LN)	-2.5	_	2.5	%
		T = 25 °C, Internal reference (RE- FSEL = 1V25 or 2V5)	-5		5	%
		T = 25 °C, External reference (REFSEL = VDD or EXT)	-1.8	—	1.8	%
		Across operating temperature range, Low-noise internal refer- ence (REFSEL = 1V25LN or 2V5LN)	-3.5		3.5	%
		Across operating temperature range, Internal reference (RE- FSEL = 1V25 or 2V5)	-7.5	_	7.5	%
		Across operating temperature range, External reference (RE- FSEL = VDD or EXT)	-2.0	_	2.0	%

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External load capactiance, OUTSCALE=0	C _{LOAD}		—	—	75	pF

Note:

1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range.

2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load.

- 3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC peripheral is enabled in the CMU.
- 4. PSRR calculated as 20 * log₁₀(Δ VDD / Δ V_{OUT}), VDAC output at 90% of full scale
- 5. Entire range is monotonic and has no missing codes.
- 6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.

4.1.16 Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Number of ranges	N _{IDAC_RANGES}		_	4	—	ranges
Output current	IIDAC_OUT	RANGESEL ¹ = RANGE0	0.05	_	1.6	μΑ
		RANGESEL ¹ = RANGE1	1.6	_	4.7	μΑ
		RANGESEL ¹ = RANGE2	0.5	_	16	μA
		RANGESEL ¹ = RANGE3	2	_	64	μA
Linear steps within each range	N _{IDAC_STEPS}		_	32	_	steps
Step size	SSIDAC	RANGESEL ¹ = RANGE0	_	50	_	nA
		RANGESEL ¹ = RANGE1	_	100	_	nA
		RANGESEL ¹ = RANGE2	_	500	_	nA
		RANGESEL ¹ = RANGE3	_	2	_	μA
Total accuracy, STEPSEL ¹ = 0x10	ACCIDAC	EM0 or EM1, AVDD=3.3 V, T = 25 °C	-3	_	3	%
		EM0 or EM1, Across operating temperature range	-18	_	22	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-2	_	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-1.7	_	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	—	-0.8	_	%
		EM2 or EM3, Source mode, RAN- GESEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-0.7	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-0.6	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%
		EM2 or EM3, Sink mode, RAN- GESEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%
Start up time	t _{IDAC_SU}	Output within 1% of steady state value	_	5	_	μs

Table 4.26. Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Settling time, (output settled	t _{IDAC_SETTLE}	Range setting is changed	_	5	_	μs
within 1% of steady state val- ue),		Step value is changed	_	1		μs
Current consumption ²	I _{IDAC}	EM0 or EM1 Source mode, ex- cluding output current, Across op- erating temperature range	_	11	18	μA
		EM0 or EM1 Sink mode, exclud- ing output current, Across operat- ing temperature range	_	13	21	μA
		EM2 or EM3 Source mode, ex- cluding output current, T = 25 °C	_	0.023	—	μΑ
		EM2 or EM3 Sink mode, exclud- ing output current, T = 25 °C	—	0.041	—	μA
		EM2 or EM3 Source mode, ex- cluding output current, T \ge 85 °C	_	11	—	μA
		EM2 or EM3 Sink mode, exclud- ing output current, $T \ge 85 \text{ °C}$	_	13	_	μA
Output voltage compliance in source mode, source current change relative to current sourced at 0 V	ICOMP_SRC	RANGESEL ¹ = RANGE0, output voltage = min(V _{IOVDD} , V_{AVDD}^2 -100 mV)	_	0.11	_	%
		RANGESEL ¹ = RANGE1, output voltage = min(V_{IOVDD} , V_{AVDD}^2 -100 mV)	_	0.06	_	%
		RANGESEL ¹ = RANGE2, output voltage = min(V_{IOVDD} , V_{AVDD}^2 -150 mV)	_	0.04	—	%
		RANGESEL ¹ = RANGE3, output voltage = min(V_{IOVDD} , V_{AVDD}^2 -250 mV)	_	0.03	_	%
Output voltage compliance in sink mode, sink current	I _{COMP} _SINK	RANGESEL ¹ = RANGE0, output voltage = 100 mV	_	0.12		%
change relative to current sunk at IOVDD		RANGESEL ¹ = RANGE1, output voltage = 100 mV	_	0.05	_	%
		RANGESEL ¹ = RANGE2, output voltage = 150 mV	_	0.04		%
		RANGESEL ¹ = RANGE3, output voltage = 250 mV	_	0.03		%

Note:

1. In IDAC_CURPROG register.

2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).

4.1.17 Capacitive Sense (CSEN)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single conversion time (1x	t _{CNV}	12-bit SAR Conversions	_	20.2	_	μs
accumulation)		16-bit SAR Conversions	_	26.4	_	μs
		Delta Modulation Conversion (sin- gle comparison)	—	1.55	_	μs
Maximum external capacitive load	C _{EXTMAX}	IREFPROG=7 (Gain = 1x), includ- ing routing parasitics	—	68	_	pF
		IREFPROG=0 (Gain = 10x), in- cluding routing parasitics	_	680	_	pF
Maximum external series impedance	R _{EXTMAX}		_	1	_	kΩ
Supply current, EM2 bonded conversions, WARMUP- MODE=NORMAL, WAR- MUPCNT=0	ICSEN_BOND	12-bit SAR conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	326	_	nA
		Delta Modulation conversions, 20 ms conversion rate, IRE- FPROG=7 (Gain = 1x), 10 chan- nels bonded (total capacitance of 330 pF) ¹	_	226	_	nA
		12-bit SAR conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	33	_	nA
		Delta Modulation conversions, 200 ms conversion rate, IRE- FPROG=7 (Gain = 1x), 10 chan- nels bonded (total capacitance of 330 pF) ¹	_	25	_	nA
Supply current, EM2 scan conversions, WARMUP- MODE=NORMAL, WAR-	ICSEN_EM2	12-bit SAR conversions, 20 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan ¹	—	690	_	nA
MUPCN1=0		Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan ¹	_	515	_	nA
		12-bit SAR conversions, 200 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan ¹	_	79	_	nA
		Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan ¹		57	_	nA

Table 4.27. Capacitive Sense (CSEN)

MGM12P Wireless Gecko Multi-Protocol Module Data Sheet Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current, continuous conversions, WARMUP- MODE=KEEPCSENWARM	ICSEN_ACTIVE	SAR or Delta Modulation conver- sions of 33 pF capacitor, IRE- FPROG=0 (Gain = 10x), always on		90.5	_	μA
HFPERCLK supply current	ICSEN_HFPERCLK	Current contribution from HFPERCLK when clock to CSEN block is enabled.	_	2.25	_	µA/MHz

Note:

1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)).

4.1.18 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-OUTEN = 1, C_{LOAD} = 75 pF with OUTSCALE = 0, or C_{LOAD} = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes^{1 2}.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply voltage (from AVDD)	V _{OPA}	HCMDIS = 0, Rail-to-rail input range	2	_	3.8	V
		HCMDIS = 1	1.62	_	3.8	V
Input voltage	V _{IN}	HCMDIS = 0, Rail-to-rail input range	V _{VSS}	_	V _{OPA}	V
		HCMDIS = 1	V _{VSS}	_	V _{OPA} -1.2	V
Input impedance	R _{IN}		100	_	_	MΩ
Output voltage	V _{OUT}		V _{VSS}		V _{OPA}	V
Load capacitance ³	C _{LOAD}	OUTSCALE = 0	_		75	pF
		OUTSCALE = 1	_		37.5	pF
Output impedance	R _{OUT}	DRIVESTRENGTH = 2 or 3, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA < I _{OUT} < 8 mA, Buffer connection, Full supply range	_	0.25	—	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Buffer connection, Full supply range	_	0.6	_	Ω
		DRIVESTRENGTH = 2 or 3, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -2 mA $<$ I _{OUT} $<$ 2 mA, Buffer connection, Full supply range	_	0.4	—	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Buffer connection, Full supply range	_	1	_	Ω
Internal closed-loop gain	G _{CL}	Buffer connection	0.99	1	1.01	-
		3x Gain connection	2.93	2.99	3.05	-
		16x Gain connection	15.07	15.7	16.33	-
Active current ⁴	I _{OPA}	DRIVESTRENGTH = 3, OUT- SCALE = 0	_	580	_	μA
		DRIVESTRENGTH = 2, OUT- SCALE = 0	_	176	-	μA
		DRIVESTRENGTH = 1, OUT- SCALE = 0	_	13	_	μA
		DRIVESTRENGTH = 0, OUT- SCALE = 0	—	4.7	-	μA

Table 4.28. Operational Amplifier (OPAMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3	_	135	—	dB
		DRIVESTRENGTH = 2		137	_	dB
		DRIVESTRENGTH = 1		121		dB
		DRIVESTRENGTH = 0	—	109	_	dB
Loop unit-gain frequency ⁵	UGF	DRIVESTRENGTH = 3, Buffer connection	_	3.38	—	MHz
		DRIVESTRENGTH = 2, Buffer connection		0.9	—	MHz
		DRIVESTRENGTH = 1, Buffer connection	_	132	—	kHz
		DRIVESTRENGTH = 0, Buffer connection	_	34	_	kHz
		DRIVESTRENGTH = 3, 3x Gain connection	_	2.57	_	MHz
		DRIVESTRENGTH = 2, 3x Gain connection	_	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection	_	113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection	_	28	_	kHz
Phase margin	РМ	DRIVESTRENGTH = 3, Buffer connection	_	67	_	o
		DRIVESTRENGTH = 2, Buffer connection		69	_	0
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	o
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	0
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz		146	_	μVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	_	163	_	μVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	_	170	_	μVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176	_	μVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	_	313	_	μVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz	_	271	_	μVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	μVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz	_	245	_	μVrms

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Slew rate ⁶	SR	DRIVESTRENGTH = 3, INCBW=1 ⁷	_	4.7	—	V/µs
		DRIVESTRENGTH = 3, INCBW=0	—	1.5	_	V/µs
		DRIVESTRENGTH = 2, INCBW=1 ⁷	—	1.27	_	V/µs
		DRIVESTRENGTH = 2, INCBW=0	_	0.42	_	V/µs
		DRIVESTRENGTH = 1, INCBW=1 ⁷	_	0.17	—	V/µs
		DRIVESTRENGTH = 1, INCBW=0	_	0.058		V/µs
		DRIVESTRENGTH = 0, INCBW=1 ⁷	—	0.044	_	V/µs
		DRIVESTRENGTH = 0, INCBW=0	_	0.015	_	V/µs
Startup time ⁸	T _{START}	DRIVESTRENGTH = 2	_		12	μs
Input offset voltage	V _{OSI}	DRIVESTRENGTH = 2 or 3, T = 25 °C	-2	_	2	mV
		DRIVESTRENGTH = 1 or 0, T = 25 °C	-2		2	mV
		DRIVESTRENGTH = 2 or 3, across operating temperature range	-12	_	12	mV
		DRIVESTRENGTH = 1 or 0, across operating temperature range	-30	_	30	mV
DC power supply rejection ratio ⁹	PSRR _{DC}	Input referred	—	70	_	dB
DC common-mode rejection ratio ⁹	CMRR _{DC}	Input referred	_	70	_	dB
Total harmonic distortion	THD _{OPA}	DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, V_{OUT} = 0.1 V to V_{OPA} - 0.1 V	_	90	_	dB
		DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, V_{OUT} = 0.1 V to V_{OPA} - 0.1 V	_	90	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						
1. Specified configu V _{OUTPUT} = 0.5 V		er configuration is: INCBW = 0, H0	CMDIS = 0, RESIN	SEL = DISABL	.E. V _{INPUT} =	0.5 V,
2. Specified configu V. Nominal volta		guration is: INCBW = 1, HCMDIS	= 1, RESINSEL = \	VSS, V _{INPUT} =	0.5 V, V _{OUT}	_{PUT} = 1.5
3. If the maximum	C _{LOAD} is exceeded, an is	solation resistor is required for sta	bility. See AN0038	for more inform	mation.	
drive the resistor	feedback network. The	. When the OPAMP is connected internal resistor feedback network P drives 1.5 V between output and	chas total resistance			
•		bandwidth product of the OPAMP. on of the feedback network.	. In 3x Gain connec	ction, UGF is th	ne gain-band	lwidth
6. Step between 0.	2V and V _{OPA} -0.2V, 10%	-90% rising/falling range.				
	set to 1 the OPAMP bar nay not be stable.	ndwidth is increased. This is allow	ed only when the n	on-inverting cl	ose-loop gai	in is ≥ 3,
8. From enable to c	output settled. In sample	-and-off mode, RC network after 0	OPAMP will contribute	ute extra delay	. Settling eri	ror < 1mV
	1 and input common mo ifications do not apply to	ode transitions the region from V _{OI}	_{PA} -1.4V to V _{OPA} -1∖	/, input offset v	vill change. I	PSRR

4.1.19 Pulse Counter (PCNT)

Table 4.29. Pulse Counter (PCNT)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Input frequency	F _{IN}	Asynchronous Single and Quad- rature Modes		_	20	MHz
		Sampled Modes with Debounce filter set to 0.	_		8	kHz

4.1.20 Analog Port (APORT)

Table 4.30. Analog Port (APORT)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current ^{1 2}	I _{APORT}	Operation in EM0/EM1		7	_	μA
		Operation in EM2/EM3		67		nA

Note:

1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current.

2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number.

4.1.21 I2C

4.1.21.1 I2C Standard-mode (Sm)¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	—	100	kHz
SCL clock low time	t _{LOW}		4.7		_	μs
SCL clock high time	t _{HIGH}		4		_	μs
SDA set-up time	t _{SU_DAT}		250		_	ns
SDA hold time ³	t _{HD_DAT}		100		3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7		_	μs
(Repeated) START condition hold time	t _{HD_STA}		4		_	μs
STOP condition set-up time	t _{su_sto}		4	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7		_	μs

Table 4.31. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

4.1.21.2 I2C Fast-mode (Fm)¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	_	400	kHz
SCL clock low time	t _{LOW}		1.3	_	—	μs
SCL clock high time	t _{HIGH}		0.6	—	—	μs
SDA set-up time	t _{SU_DAT}		100	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	—	900	ns
Repeated START condition set-up time	t _{SU_STA}		0.6	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		0.6	_	_	μs
STOP condition set-up time	t _{SU_STO}		0.6	—	—	μs
Bus free time between a STOP and START condition	t _{BUF}		1.3	_	_	μs

Table 4.32. I2C Fast-mode (Fm)¹

Note:

1. For CLHR set to 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

4.1.21.3 I2C Fast-mode Plus (Fm+)¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	1000	kHz
SCL clock low time	t _{LOW}		0.5	_	_	μs
SCL clock high time	t _{HIGH}		0.26			μs
SDA set-up time	t _{SU_DAT}		50	_	_	ns
SDA hold time	t _{HD_DAT}		100	—	—	ns
Repeated START condition set-up time	t _{SU_STA}		0.26			μs
(Repeated) START condition hold time	t _{HD_STA}		0.26			μs
STOP condition set-up time	t _{su_sto}		0.26	—	_	μs
Bus free time between a STOP and START condition	t _{BUF}		0.5	—		μs

Table 4.33. I2C Fast-mode Plus (Fm+)¹

Note:

1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.

4.1.22 USART SPI

SPI Master Timing

Table 4.34. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 2 3}	t _{SCLK}		2 * ^t HFPERCLK	—	—	ns
CS to MOSI ^{1 2}	t _{CS_MO}		-14.5	_	13.5	ns
SCLK to MOSI ^{1 2}	t _{SCLK_MO}		-8.5	_	8	ns
MISO setup time ^{1 2}	t _{su_мi}	IOVDD = 1.62 V	92	—	_	ns
		IOVDD = 3.0 V	42	—	_	ns
MISO hold time ^{1 2}	t _{H_MI}		-10			ns

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

 $3.t_{\mathsf{HFPERCLK}}$ is one period of the selected HFPERCLK.

Figure 4.1. SPI Master Timing Diagram (SMSDELAY = 0)

Figure 4.2. SPI Master Timing Diagram (SMSDELAY = 1)

SPI Slave Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 2 3}	t _{SCLK}		6 * ^t HFPERCLK	_	—	ns
SCLK high time ^{1 2 3}	t _{SCLK_HI}		2.5 * ^t HFPERCLK	_	_	ns
SCLK low time ^{1 2 3}	t _{SCLK_LO}		2.5 * ^t HFPERCLK	_	_	ns
CS active to MISO ^{1 2}	t _{CS_ACT_MI}		4		70	ns
CS disable to MISO ^{1 2}	t _{CS_DIS_MI}		4	—	50	ns
MOSI setup time ^{1 2}	t _{SU_MO}		8	_	_	ns
MOSI hold time ^{1 2 3}	t _{H_MO}		7	_	_	ns
SCLK to MISO ^{1 2 3}	t _{SCLK_MI}		10 + 1.5 * ^t hfperclk	_	65 + 2.5 * t _{HFPERCLK}	ns

Table 4.35. SPI Slave Timing

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

3. t_{HFPERCLK} is one period of the selected HFPERCLK.

Figure 4.3. SPI Slave Timing Diagram

5. Typical Connection Diagrams

5.1 Network Co-Processor (NCP) Application with UART Host

The MGM12P can be controlled over the UART interface as a peripheral to an external host processor. Typical power supply, programming/debug, and host interface connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for Custom Designs for more details.

5.2 Network Co-Processor (NCP) Application with SPI Host

The MGM12P can be controlled over the SPI interface as a peripheral to an external host processor. Typical power supply, programming/debug and host interface connections are shown in the figure below. Refer to *AN958: Debugging and Programming Interfaces for Custom Designs* for more details.

Figure 5.2. Connection Diagram: SPI NCP Configuration

5.3 SoC Application

The MGM12P can be used in a standalone SoC configuration with no external host processor. Typical power supply and programming/ debug connections are shown in the figure below. Refer to *AN958: Debugging and Programming Interfaces for Custom Designs* for more details.

Figure 5.3. Connection Diagram: SoC Configuration

6. Layout Guidelines

For optimal performance of the MGM12P (with integrated antenna), please follow the PCB layout guidelines and ground plane recommendations indicated in this section.

6.1 Module Placement and Application PCB Layout Guidelines

- Place the module at the edge of the PCB, as shown in the figure below.
- Do not place any metal (traces, components, battery, etc.) within the clearance area of the antenna (shown in the figure below).
- · Connect all ground pads directly to a solid ground plane.
- · Place the ground vias as close to the ground pads as possible.
- · Do not place plastic or any other dielectric material in touch with the antenna.

Place vias along all PCB edges

The layouts in the next figure will result in severely degraded RF-performance.

Figure 6.2. Non-optimal Module Placements for MGM12P with Integrated Antenna

Figure 6.3. Impact of GND Plane Size vs. Range for MGM12P

6.2 Effect of Plastic and Metal Materials

Do not place plastic or any other dielectric material in closs proximity to the antenna.

Any metallic objects in close proximity to the antenna will prevent the antenna from radiating freely. The minimum recommended distance of metallic and/or conductive objects is 10 mm in any direction from the antenna except in the directions of the application PCB ground planes.

6.3 Locating the Module Close to Human Body

Placing the module in touch or very close to the human body will negatively impact antenna efficiency and reduce range.

6.4 2D Radiation Pattern Plots

2D pattern, front view

2D pattern, side view

Figure 6.6. Typical 2D Radiation Pattern – Top View

7. Hardware Design Guidelines

The MGM12P is an easy-to-use module with regard to hardware application design but certain design guidelines must be followed to guarantee optimal performance. These guidelines are listed in the next sub-sections.

7.1 Power Supply Requirements

Coin cell batteries cannot withstand high peak currents (e.g. higher than 15 mA). If the peak current exceeds 15 mA it's recommended to place 47 - 100 μ F capacitor in parallel with the coin cell battery to improve the battery life time. Notice that the total current consumption of your application is a combination of the radio, peripherals and MCU current consumption so you must take all of these into account. MGM12P should be powered by a unipolar supply voltage with nominal value of 3.3 V.

7.2 Reset Functions

The MGM12P can be reset by three different methods: by pulling the RESET line low, by the internal watchdog timer or software command. The reset state in MGM12P does not provide any power saving functionality and thus is not recommended as a means to conserve power. MGM12P has an internal system power-up reset function. The RESET pin includes an on-chip pull-up resistor and can therefore be left unconnected if no external reset switch or source is needed.

7.3 Debug and Firmware Updates

This section contains information on debug and firmware update methods. For additional information, refer to the following application note: AN958: Debugging and Programming Interfaces for Custom Designs.

7.3.1 Programming and Debug Connections

It is recommended to expose the debug pins in your own hardware design for firmware update and debug purposes. The following table lists the required pins for JTAG connection and SWD connections.

The debug pins have pull-down and pull-up enabled by default, so leaving them enabled may increase current consumption if left connected to supply or ground. If enabling the JTAG pins the module must be power cycled to enable a SWD debug session.

PAD NAME	PAD NUMBER	JTAG SIGNAL NAME	SWD SIGNAL NAME	COMMENTS
PF3	24	TDI	N/A	This pin is disabled after reset. Once enabled the pin has a built-in pull-up.
PF2	23	TDO	N/A	This pin is disabled after reset
PF1	22	TMS	SWDIO	Pin is enabled after reset and has a built-in pull-up
PF0	21	тск	SWCLK	Pin is enabled after reset and has a built-in pull- down

Table 7.1. JTAG Pads

7.3.2 Packet Trace Interface (PTI)

The MGM12P integrates a true PHY-level PTI with the MAC, allowing complete, non-intrusive capture of all packets to and from the EFR32 Wireless STK development tools.

8. Pin Definitions

8.1 Pin Definitions

Figure 8.1. MGM12P Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
GND	1 12 20 31	Ground	PD13	2	GPIO
PD14	3	GPIO	PD15	4	GPIO
PA0	5	GPIO	PA1	6	GPIO
PA2	7	GPIO	PA3	8	GPIO
PA4	9	GPIO	PA5	10	GPIO (5V)
PB11	11	GPIO	PB13	13	GPIO
PC6	14	GPIO (5V)	PC7	15	GPIO (5V)
PC8	16	GPIO (5V)	PC9	17	GPIO (5V)
PC10	18	GPIO (5V)	PC11	19	GPIO (5V)
PF0	21	GPIO (5V)	PF1	22	GPIO (5V)
PF2	23	GPIO (5V)	PF3	24	GPIO (5V)
PF4	25	GPIO (5V)	PF5	26	GPIO (5V)
PF6	27	GPIO (5V)	PF7	28	GPIO (5V)
VDD	29	Module Power Supply	RESETn	30	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.

Table 8.1. MGM12P Device Pinout

Note:

1. GPIO with 5V tolerance are indicated by (5V).

8.1.1 GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters A through F, and the individual pins on each port are indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	PA5 (5V)	PA4	PA3	PA2	PA1	PA0
Port B			PB13		PB11	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	PC11 (5V)	PC10 (5V)	PC9 (5V)	PC8 (5V)	PC7 (5V)	PC6 (5V)	-	-	-	-	-	-
Port D	PD15	PD14	PD13				-	-	-	-	-	-	-	-	-	-
Port E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	PF7 (5V)	PF6 (5V)	PF5 (5V)	PF4 (5V)	PF3 (5V)	PF2 (5V)	PF1 (5V)	PF0 (5V)
Note: 1. GPIO wit																

Table 8.2. GPIO Pinout

8.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate									
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
ACMP0_O	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Analog comparator ACMP0, digital out- put.
ACMP1_O	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Analog comparator ACMP1, digital out- put.
ADC0_EXTN	0: PA0								Analog to digital converter ADC0 ex- ternal reference in- put negative pin.
ADC0_EXTP	0: PA1								Analog to digital converter ADC0 ex- ternal reference in- put positive pin.
CMU_CLK0	0: PA1 2: PC6 3: PC11	5: PD14 6: PF2 7: PF7							Clock Management Unit, clock output number 0.
CMU_CLK1	0: PA0 2: PC7 3: PC10	5: PD15 6: PF3 7: PF6							Clock Management Unit, clock output number 1.
CMU_CLKI0	0: PB13 1: PF7 2: PC6	4: PA5							Clock Management Unit, clock output number I0.
	0: PF0								Debug-interface Serial Wire clock input and JTAG Test Clock.
DBG_SWCLKTCK									Note that this func- tion is enabled to the pin out of reset, and has a built-in pull down.

Table 8.3. Alternate Functionality Overview

Alternate				LOCA					
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PF1								Debug-interface Serial Wire data in- put / output and JTAG Test Mode Select.
DBG_SWDIOTMS									Note that this func- tion is enabled to the pin out of reset, and has a built-in pull up.
	0: PF2 1: PB13 2: PD15								Debug-interface Serial Wire viewer Output.
DBG_SWO	3: PC11								Note that this func- tion is not enabled after reset, and must be enabled by software to be used.
	0: PF3								Debug-interface JTAG Test Data In.
DBG_TDI									Note that this func- tion becomes avail- able after the first valid JTAG com- mand is received, and has a built-in pull up when JTAG is active.
	0: PF2								Debug-interface JTAG Test Data Out.
DBG_TDO									Note that this func- tion becomes avail- able after the first valid JTAG com- mand is received.
ETM_TCLK	1: PA5 3: PC6								Embedded Trace Module ETM clock .
ETM_TD0	3: PC7								Embedded Trace Module ETM data 0.
ETM_TD1	3: PC8								Embedded Trace Module ETM data 1.
ETM_TD2	3: PC9		_						Embedded Trace Module ETM data 2.

Alternate									
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
ETM_TD3	3: PC10								Embedded Trace Module ETM data 3.
FRC_DCLK	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Frame Controller, Data Sniffer Clock.
FRC_DFRAME	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 6: PB13	9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11	19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Frame Controller, Data Sniffer Frame active
FRC_DOUT	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Frame Controller, Data Sniffer Out- put.
GPIO_EM4WU0	0: PF2								Pin can be used to wake the system up from EM4
GPIO_EM4WU1	0: PF7								Pin can be used to wake the system up from EM4
GPIO_EM4WU4	0: PD14								Pin can be used to wake the system up from EM4
GPIO_EM4WU8	0: PA3								Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PB13								Pin can be used to wake the system up from EM4
GPIO_EM4WU12	0: PC10								Pin can be used to wake the system up from EM4
I2C0_SCL	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	I2C0 Serial Data in- put / output.
I2C1_SCL					18: PC10 19: PC11				I2C1 Serial Clock Line input / output.

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
I2C1_SDA					19: PC10	20: PC11			I2C1 Serial Data in- put / output.
LES_CH5	0: PD13								LESENSE channel 5.
LES_CH6	0: PD14								LESENSE channel 6.
LES_CH7	0: PD15								LESENSE channel 7.
LES_CH8	0: PA0								LESENSE channel 8.
LES_CH9	0: PA1								LESENSE channel 9.
LES_CH10	0: PA2								LESENSE channel 10.
LES_CH11	0: PA3								LESENSE channel 11.
LES_CH12	0: PA4								LESENSE channel 12.
LES_CH13	0: PA5								LESENSE channel 13.
LETIM0_OUT0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	LEUART0 Receive input.

Alternate				LOCA	TION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
LEU0_TX	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	LEUART0 Transmit output. Also used as receive input in half duplex commu- nication.
MODEM_ANT0	0: PA3 1: PA4 2: PA5 3: PB11	5: PB13	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11	18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	MODEM antenna control output 0, used for antenna diversity.
MODEM_ANT1	0: PA4 1: PA5 2: PB11	4: PB13 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11	17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	MODEM antenna control output 1, used for antenna diversity.
MODEM_DCLK	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	MODEM data clock out.
MODEM_DIN	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	MODEM data in.
MODEM_DOUT	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 6: PB13	9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11	19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	MODEM data out.
OPA0_N	0: PA4								Operational Amplifi- er 0 external nega- tive input.
OPA0_P	0: PA2								Operational Amplifi- er 0 external posi- tive input.
OPA1_N	0: PD15								Operational Amplifi- er 1 external nega- tive input.
OPA1_P	0: PD13								Operational Amplifi- er 1 external posi- tive input.
OPA2_N	0: PB13								Operational Amplifi- er 2 external nega- tive input.
OPA2_P	0: PB11								Operational Amplifi- er 2 external posi- tive input.
PCNT0_S0IN	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Pulse Counter PCNT0 input num- ber 0.

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
PCNT0_S1IN	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Pulse Counter PCNT0 input num- ber 1.
PCNT1_S0IN					19: PF6	20: PF7			Pulse Counter PCNT1 input num- ber 0.
PCNT1_S1IN					18: PF6 19: PF7				Pulse Counter PCNT1 input num- ber 1.
PCNT2_S0IN					19: PC10	20: PC11			Pulse Counter PCNT2 input num- ber 0.
PCNT2_S1IN					18: PC10 19: PC11				Pulse Counter PCNT2 input num- ber 1.
PRS_CH0	0: PF0 1: PF1 2: PF2 3: PF3	4: PF4 5: PF5 6: PF6 7: PF7	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11					Peripheral Reflex System PRS, chan- nel 0.
PRS_CH1	0: PF1 1: PF2 2: PF3 3: PF4	4: PF5 5: PF6 6: PF7 7: PF0							Peripheral Reflex System PRS, chan- nel 1.
PRS_CH2	0: PF2 1: PF3 2: PF4 3: PF5	4: PF6 5: PF7 6: PF0 7: PF1							Peripheral Reflex System PRS, chan- nel 2.
PRS_CH3	0: PF3 1: PF4 2: PF5 3: PF6	4: PF7 5: PF0 6: PF1 7: PF2		12: PD13 13: PD14 14: PD15					Peripheral Reflex System PRS, chan- nel 3.
PRS_CH4		4: PD13 5: PD14 6: PD15							Peripheral Reflex System PRS, chan- nel 4.
PRS_CH5	3: PD13	4: PD14 5: PD15							Peripheral Reflex System PRS, chan- nel 5.
PRS_CH6	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13	15: PD13	16: PD14 17: PD15				Peripheral Reflex System PRS, chan- nel 6.
PRS_CH7	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PA0						Peripheral Reflex System PRS, chan- nel 7.

Alternate				LOC	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
PRS_CH8	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 6: PB13	9: PA0 10: PA1						Peripheral Reflex System PRS, chan- nel 8.
PRS_CH9	0: PA3 1: PA4 2: PA5 3: PB11	5: PB13	8: PA0 9: PA1 10: PA2 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11				Peripheral Reflex System PRS, chan- nel 9.
PRS_CH10	0: PC6 1: PC7 2: PC8 3: PC9	4: PC10 5: PC11							Peripheral Reflex System PRS, chan- nel 10.
PRS_CH11	0: PC7 1: PC8 2: PC9 3: PC10	4: PC11 5: PC6							Peripheral Reflex System PRS, chan- nel 11.
TIM0_CC0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 6: PB13	9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11	19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	0: PA3 1: PA4 2: PA5 3: PB11	5: PB13	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11	18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 0 Compli- mentary Dead Time Insertion channel 0.
TIM0_CDTI1	0: PA4 1: PA5 2: PB11	4: PB13 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11	17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	Timer 0 Compli- mentary Dead Time Insertion channel 1.
TIM0_CDTI2	0: PA5 1: PB11 3: PB13	6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11		16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	Timer 0 Compli- mentary Dead Time Insertion channel 2.
TIM1_CC0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 6: PB13	9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11	19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 1 Capture Compare input / output channel 2.
Alternate				LOCA	ATION				
---------------	---------------------------------------	------------------------------	--	--	---	---	--	--	--
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
TIM1_CC3	0: PA3 1: PA4 2: PA5 3: PB11	5: PB13	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11	18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 1 Capture Compare input / output channel 3.
US0_CLK	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 6: PB13	9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11	19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	USART0 clock in- put / output.
US0_CS	0: PA3 1: PA4 2: PA5 3: PB11	5: PB13	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11	18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	USART0 chip se- lect input / output.
US0_CTS	0: PA4 1: PA5 2: PB11	4: PB13 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11	17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	USART0 Clear To Send hardware flow control input.
US0_RTS	0: PA5 1: PB11 3: PB13	6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11		16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	USART0 Request To Send hardware flow control output.
US0_RX	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	USART0 Asynchro- nous Receive. USART0 Synchro- nous mode Master Input / Slave Out- put (MISO).
US0_TX	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	USART0 Asynchro- nous Transmit. Al- so used as receive input in half duplex communication. USART0 Synchro- nous mode Master Output / Slave In- put (MOSI).
US1_CLK	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 6: PB13	9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11	19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	USART1 clock in- put / output.
US1_CS	0: PA3 1: PA4 2: PA5 3: PB11	5: PB13	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11	18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	USART1 chip se- lect input / output.
US1_CTS	0: PA4 1: PA5 2: PB11	4: PB13 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11	17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	USART1 Clear To Send hardware flow control input.
US1_RTS	0: PA5 1: PB11 3: PB13	6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11		16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	USART1 Request To Send hardware flow control output.

Alternate				LOCA	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
US1_RX	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 7: PB13	10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	USART1 Asynchro- nous Receive. USART1 Synchro- nous mode Master Input / Slave Out- put (MISO).
US1_TX	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11	8: PB13 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11	21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	USART1 Asynchro- nous Transmit. Al- so used as receive input in half duplex communication. USART1 Synchro- nous mode Master Output / Slave In- put (MOSI).
US2_CLK				12: PF0 13: PF1 14: PF3 15: PF4	16: PF5 17: PF6 18: PF7			30: PA5	USART2 clock in- put / output.
US2_CS			11: PF0	12: PF1 13: PF3 14: PF4 15: PF5	16: PF6 17: PF7			29: PA5	USART2 chip se- lect input / output.
US2_CTS			10: PF0 11: PF1	12: PF3 13: PF4 14: PF5 15: PF6	16: PF7			28: PA5	USART2 Clear To Send hardware flow control input.
US2_RTS			9: PF0 10: PF1 11: PF3	12: PF4 13: PF5 14: PF6 15: PF7			27: PA5		USART2 Request To Send hardware flow control output.
US2_RX				13: PF0 14: PF1 15: PF3	16: PF4 17: PF5 18: PF6 19: PF7			31: PA5	USART2 Asynchro- nous Receive. USART2 Synchro- nous mode Master Input / Slave Out- put (MISO).
US2_TX	0: PA5			14: PF0 15: PF1	16: PF3 17: PF4 18: PF5 19: PF6	20: PF7			USART2 Asynchro- nous Transmit. Al- so used as receive input in half duplex communication. USART2 Synchro- nous mode Master Output / Slave In- put (MOSI).
US3_CLK	3: PD13	4: PD14 5: PD15		13: PB11					USART3 clock in- put / output.

Alternate				LOC	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
US3_CS	2: PD13 3: PD14	4: PD15		12: PB11					USART3 chip se- lect input / output.
US3_CTS	1: PD13 2: PD14 3: PD15		11: PB11						USART3 Clear To Send hardware flow control input.
US3_RTS	0: PD13 1: PD14 2: PD15		10: PB11						USART3 Request To Send hardware flow control output.
US3_RX		4: PD13 5: PD14 6: PD15		14: PB11					USART3 Asynchro- nous Receive. USART3 Synchro- nous mode Master Input / Slave Out- put (MISO).
US3_TX		5: PD13 6: PD14 7: PD15		15: PB11					USART3 Asynchro- nous Transmit. Al- so used as receive input in half duplex communication.
									USART3 Synchro- nous mode Master Output / Slave In- put (MOSI).
VDAC0_EXT	0: PA1								Digital to analog converter VDAC0 external reference input pin.
VDAC0_OUT0 / OPA0_OUT	0: PA3								Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT0AL T / OPA0_OUT- ALT	0: PA5 1: PD13 2: PD15								Digital to Analog Converter DAC0 al- ternative output for channel 0.
VDAC0_OUT1 / OPA1_OUT	0: PD14								Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1AL T / OPA1_OUT- ALT	1: PA2 2: PA4								Digital to Analog Converter DAC0 al- ternative output for channel 1.
WTIM0_CC0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5		15: PB11	17: PB13		26: PC6 27: PC7	28: PC8 29: PC9 30: PC10 31: PC11	Wide timer 0 Cap- ture Compare in- put / output channel 0.

Alternate				LOC	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
WTIM0_CC1	0: PA2 1: PA3 2: PA4 3: PA5			13: PB11 15: PB13			24: PC6 25: PC7 26: PC8 27: PC9	28: PC10 29: PC11	Wide timer 0 Cap- ture Compare in- put / output channel 1.
WTIM0_CC2	0: PA4 1: PA5		11: PB11	13: PB13		22: PC6 23: PC7	24: PC8 25: PC9 26: PC10 27: PC11		Wide timer 0 Cap- ture Compare in- put / output channel 2.
WTIM0_CDTI0		7: PB11	9: PB13		18: PC6 19: PC7	20: PC8 21: PC9 22: PC10 23: PC11		29: PD13 30: PD14 31: PD15	Wide timer 0 Com- plimentary Dead Time Insertion channel 0.
WTIM0_CDTI1		5: PB11 7: PB13			16: PC6 17: PC7 18: PC8 19: PC9	20: PC10 21: PC11	27: PD13	28: PD14 29: PD15 30: PF0 31: PF1	Wide timer 0 Com- plimentary Dead Time Insertion channel 1.
WTIM0_CDTI2	3: PB11	5: PB13		14: PC6 15: PC7	16: PC8 17: PC9 18: PC10 19: PC11		25: PD13 26: PD14 27: PD15	28: PF0 29: PF1 30: PF2 31: PF3	Wide timer 0 Com- plimentary Dead Time Insertion channel 2.
WTIM1_CC0	1: PB13		10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11		21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Wide timer 1 Cap- ture Compare in- put / output channel 0.
WTIM1_CC1			8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11	19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7	Wide timer 1 Cap- ture Compare in- put / output channel 1.
WTIM1_CC2		6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11		17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7		Wide timer 1 Cap- ture Compare in- put / output channel 2.
WTIM1_CC3		4: PC6 5: PC7 6: PC8 7: PC9	8: PC10 9: PC11	15: PD13	16: PD14 17: PD15 18: PF0 19: PF1	20: PF2 21: PF3 22: PF4 23: PF5	24: PF6 25: PF7		Wide timer 1 Cap- ture Compare in- put / output channel 3.

8.3 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 8.2 APORT Connection Diagram on page 77 Shows the APORT routing for this device family. A complete description of APORT functionality can be found in the Reference Manual. The APORT information in this section is reflective of the IC used in the modules. Not all ports are available on the modules. The module pins available correspond with the pin names in this section.

Figure 8.2. APORT Connection Diagram

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT0X	BUSACMP0X																															PA9	PA8
APORT0Y	BUSACMP0Y																															PA9	PA8
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8

PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Table 8.4. ACMP0 Bus and Pin Mapping

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
APORT0X	BUSACMP1X																									PJ15	PJ14						
APORT0Y	BUSACMP1Y																									PJ15	PJ14						
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		90d		PC4		PC2		PC0
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		90d		PC4		PC2		PC0
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8

Table 8.5. ACMP1 Bus and Pin Mapping

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
APORT0X	BUSADC0X																													PI3	PI2	PI1	PIO
APORT0Y	BUSADC0Y																													PI3	PI2	PI1	PIO
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								9AG		PA4		PA2		PA0		PD14		PD12		PD10		PD8

Table 8.6. ADC0 Bus and Pin Mapping

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
CE	хт																																
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PCO
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		199						PC11		PC9		PC7		PC5		PC3		PC1	
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
CE	хт_	SEN	ISE																														
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		174						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PCO
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8

Table 8.7. CSEN Bus and Pin Mapping

Table 8.8. IDAC0 Bus and Pin Mapping

Port		CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	OHO
APORT1X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		aUa
APORT1Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
OP	PA0_	N																															
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PCO
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
OP	PA0_	P																															
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PCO
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	

Table 8.9. VDAC0 / OPA Bus and Pin Mapping

MGM12P Wireless Gecko Multi-Protocol Module Data Sheet Pin Definitions

_			_																														
Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
OP	A1_	N																															
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PFO						PC10		PC8		PC6		PC4		PC2		PC0
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8
ОР	A1_	P	_					_			_	_		_	_	_					_	_		_	_		_	_		_			
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PAO		PD14		PD12		PD10		PD8
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
OP	A2_	N																															
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8

MGM12P Wireless Gecko Multi-Protocol Module Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO
	A2_																																
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PAO		PD14		PD12		PD10		PD8
OP	A2_	P																															
APORT1X	BUSAX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PC0
APORT2X	BUSBX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT3X	BUSCX		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PAO		PD14		PD12		PD10		PD8
APORT4X	BUSDX	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
VD	ACO	0_0	UT0	/ 0	PA0	_οι	JT																										
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0						PC10		PC8		PC6		PC4		PC2		PCO
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8

MGM12P Wireless Gecko Multi-Protocol Module Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
VD	VDAC0_OUT1 / OPA1_OUT																																
APORT1Y	BUSAY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1						PC11		PC9		PC7		PC5		PC3		PC1	
APORT2Y	BUSBY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PFO						PC10		PC8		PC6		PC4		PC2		PCO
APORT3Y	BUSCY	PB15		PB13		PB11		PB9		PB7								PA7		PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12		PB10		PB8		PB6								PA6		PA4		PA2		PA0		PD14		PD12		PD10		PD8

9. Package Specifications

9.1 MGM12P Package Outline

Figure 9.2. Top View and Side View with U.FL Option

Figure 9.3. Bottom View

9.2 MGM12P Recommended PCB Land Pattern

The figure below shows the recommended land pattern. The antenna clearance section is not required for the MGM12P module version with the U.FL connector.

Figure 9.4. MGM12P Recommended PCB Land Pattern

9.3 MGM12P Package Marking

The figure below shows the Module markings printed on the RF-shield.

Figure 9.5. MGM12P Package Marking

Mark Description

The package marking consists of:

- MGM12Pxxxxxx Part number designation
- Model: MGM12Pxxxx Model number designation
- QR Code: YYWWMMABCDE
 - YY The last 2 digits of the assembly year
 - · WW The 2 digit work week when the device was assembled
 - MMABCDE Silicon Labs unit code
- Trace Code: YYWWTTTTTT
 - · YY The last 2 digits of the assembly year
 - · WW The 2 digit work week when the device was assembled
 - TTTTTT A trace or manufacturing code. The first letter is the device revision
- Certification marks such as the CE logo, FCC and IC IDs, etc. will be engraved on the grayed out area or printed on the back side of the module, according to regulatory body requirements

10. Soldering Recommendations

It is recommended that final PCB assembly of this product follows the industry standard as identified by the Institute for Printed Circuits (IPC). This product is assembled in compliance with the J-STD-001 requirements and the guidelines of IPC-AJ-820. Surface mounting of this product by the end user is recommended to follow IPC-A-610 to meet or exceed class 2 requirements.

CLASS 1 General Electronic Products

Includes products suitable for applications where the major requirement is function of the completed assembly.

CLASS 2 Dedicated Service Electronic Products

Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures.

CLASS 3 High Performance/Harsh Environment Electronic Products

Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.

11. Tape and Reel Specifications

11.1 Tape and Reel Specification

This section contains information regarding the tape and reel packaging for the MGM12P Wireless Gecko Module.

11.2 Reel Material and Dimensions

- Reel material: Polystyrene (PS)
- Reel diameter: 13 inches (330 mm)
- Number of modules per reel: 1000 pcs
- · Disk deformation, folding whitening and mold imperfections: Not allowed
- · Disk set: consists of two 13 inch (330 mm) rotary round disks and one central axis (100 mm)
- · Antistatic treatment: Required
- Surface resistivity: 104 109 Ω/sq.

Figure 11.1. Reel Dimension — Side View

Symbol	Dimensions [mm]
W0	44.0 +0.5/0.0
W1	48.0

11.3 Module Orientation and Tap

The user direction of feed, start and end of tape on reel and orientation of the Modules on the tape are shown in the figures below.

Figure 11.2. Module Orientation and Feed Direction

11.4 Carrier Tape and Cover Tape Information

Figure 11.3. Carrier Tape Information

Figure 11.4. Cover Tape Information

Symbol	Dimensions [mm]							
Thickness (T)	0.055 +0.005/-0.003							
Width (W)	37.50 +0.30/-0.10							

12. Certifications

12.1 CE and UKCA - EU and UK

The MGM12P(MGM12P02 and MGM12P22) modules have been tested against the relevant harmonized/designated standards and are in conformity with the essential requirements and other relevant requirements of the EU's Radio Equipment Directive (RED) (2014/53/EU) and of the UK's Radio Equipment Regulations (RER) (S.I. 2017/1206).

Please notice that every end-product integrating a MGM12P(MGM12P02 and MGM12P22) module will need to perform the radio EMC tests on the whole assembly, according to the ETSI 301 489-x relevant standards.

Furthermore, it is ultimately the responsibility of the manufacturers to ensure the compliance of their end-products as a whole. The specific product assembly is likely to have an impact to RF radiated characteristics, when compared to the bare module. Hence, manufacturers should carefully consider RF radiated testing with the final product assembly, especially taking into account the gain of the external antenna if any, and the possible deviations in the PSD, EIRP and spurious emissions measurements, as defined in the ETSI EN 300 328 standard.

The modules are entitled to carry the CE and UKCA Marks, and a formal Declaration of Conformity (DoC) is available at the product web page which is reachable starting from https://www.silabs.com/.

12.2 FCC

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesirable operation.

Any changes or modifications not expressly approved by Silicon Labs could void the user's authority to operate the equipment.

FCC RF Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter meets both portable and mobile limits as demonstrated in the RF Exposure Analysis. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures.

OEM Responsibilities to comply with FCC Regulations

OEM integrator is responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

- With MGM12P22GA, MGM12P22GE, MGM12P02GA and MGM12P02GE the antenna(s) must be installed such that a minimum separation distance of 6.7mm is maintained between the radiator (antenna) and all persons at all times.
- With MGM12P32GA and MGM12P32GE the antenna(s) must be installed such that a minimum separation distance of 39mm is maintained between the radiator (antenna) and all persons at all times.
- The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures.

IMPORTANT NOTE: In the event that the above conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End Product Labeling

The variants of MGM12P Modules are labeled with their own FCC IDs. If the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final product must be labeled in a visible area with the following

MODELS MGM12P02GE and MGM12P02GA:

"Contains Transmitter Module FCC ID: QOQMGM12P0"

or

"Contains FCC ID: QOQMGM12P0

MODELS MGM12P22GE and MGM12P22GA:

"Contains Transmitter Module FCC ID: QOQMGM12P2"

or

"Contains FCC ID: QOQMGM12P2

MODELS MGM12P32GE and MGM12P32GA:

"Contains Transmitter Module FCC ID: QOQMGM12P3"

or

"Contains FCC ID: QOQMGM12P3

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product.

12.3 ISEDC

This radio transmitter (IC: 5123A-MGM12P) has been approved by Industry Canada to operate with the embedded chip antenna and a standard 2.14 dBi dipole antenna. Other antenna types are strictly prohibited for use with this device.

This device complies with Industry Canada's license-exempt RSS standards. Operation is subject to the following two conditions:

- 1. This device may not cause interference; and
- 2. This device must accept any interference, including interference that may cause undesired operation of the device

RF Exposure Statemment

Exception from routine SAR evaluation limits are given in RSS-102 Issue 5.

MGM12P22GA, MGM12P22GE, MGM12P02GA and MGM12P02GE modules meets the given requirements when the minimum separation distance to human body is 20 mm.

MGM12P32GA and MGM12P32GA modules meets the given requirements when the minimum separation distance to human body is 35 mm.

RF exposure or SAR evaluation is not required when the separation distance is same or more than stated above. If the separation distance is less than stated above the OEM integrator is responsible for evaluating the SAR.

OEM Responsibilities to comply with IC Regulations

The MGM12P module has been certified for integration into products only by OEM integrators under the following conditions:

- The antenna(s) must be installed such that a minimum separation distance as stated above is maintained between the radiator (antenna) and all persons at all times.
- The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.

As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the ISEDC authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate ISEDC authorization.

End Product Labeling

The MGM12P modules are labeled with their own IC ID. If the IC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following:

MODELS MGM12P02GE and MGM12P02GA:

"Contains Transmitter Module IC: 5123A-MGM12P0"

or

"Contains IC: 5123A-MGM12P0

MODELS MGM12P22GE and MGM12P22GA:

"Contains Transmitter Module IC: 5123A-MGM12P2"

or

"Contains IC: 5123A-MGM12P2

MODELS MGM12P32GE and MGM12P32GA:

"Contains Transmitter Module IC: 5123A-MGM12P3"

or

"Contains IC: 5123A-MGM12P3"

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product

ISEDC (Français)

Industrie Canada a approuvé l'utilisation de cet émetteur radio (IC: 5123A-MGM12P) en conjonction avec des antennes de type dipolaire à 2.14dBi ou des antennes embarquées, intégrée au produit.

L'utilisation de tout autre type d'antenne avec ce composant est proscrite.

Ce composant est conforme aux normes RSS, exonérées de licence d'Industrie Canada. Son mode de fonctionnement est soumis aux deux conditions suivantes :

- 1. Ce composant ne doit pas générer d'interférences
- 2. Ce composant doit pouvoir est soumis à tout type de perturbation y compris celle pouvant nuire à son bon fonctionnement.

Déclaration d'exposition RF

L'exception tirée des limites courantes d'évaluation SAR est donnée dans le document RSS-102 Issue 5.

Les modules MGM12P22GA, MGM12P22GE, MGM12P02GA et MGM12P02GE répondent aux exigences requises lorsque la distance minimale de séparation avec le corps humain est de 20 mm.

Les modules MGM12P32GA et MGM12P32GA répondent aux exigences requises lorsque la distance minimale de séparation avec le corps humain est de 35 mm.

La déclaration d'exposition RF ou l'évaluation SAR n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à celle indiquée ci-dessus.

Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de procédé à une évaluation SAR.

Responsabilités des OEM pour une mise en conformité avec le Règlement du Circuit Intégré

Le module MGM12P a été approuvé pour l'intégration dans des produits finaux exclusivement réalisés par des OEM sous les conditions suivantes:

- L'antenne (s) doit être installée de sorte qu'une distance de séparation minimale indiquée ci-dessus soit maintenue entre le radiateur (antenne) et toutes les personnes avoisinante, ce à tout moment.
- Le module émetteur ne doit pas être localisé ou fonctionner avec une autre antenne ou un autre transmetteur que celle indiquée plus haut.

Tant que les deux conditions ci-dessus sont respectées, il n'est pas nécessaire de tester ce transmetteur de façon plus poussée. Cependant, il incombe à l'intégrateur OEM de s'assurer de la bonne conformité du produit fini avec les autres normes auxquelles il pourrait être soumis de fait de l'utilisation de ce module (par exemple, les émissions des périphériques numériques, les exigences de périphériques PC, etc.).

REMARQUE IMPORTANTE: dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou co-implantation avec un autre émetteur), l'autorisation ISEDC n'est plus considérée comme valide et le numéro d'identification ID IC ne peut pas être apposé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera responsable de la réévaluation du produit final (y compris le transmetteur) et de l'obtention d'une autorisation ISEDC distincte.

Étiquetage des produits finis

Les modules MGM12P sont étiquetés avec leur propre ID IC. Si l'ID IC n'est pas visible lorsque le module est intégré au sein d'un autre produit, cet autre produit dans lequel le module est installé devra porter une étiquette faisant apparaître les référence du module intégré. Dans un tel cas, sur le produit final doit se trouver une étiquette aisément lisible sur laquelle figurent les informations suivantes :

MODÈLES MGM12P02GE et MGM12P02GA:

"Contient le module transmetteur : 5123A-MGM12P0"

ou

"Contient le circuit: 5123A-MGM12P0

MODÈLES MGM12P22GE et MGM12P22GA:

"Contient le module transmetteur: 5123A-MGM12P2"

ou

"Contient IC: 5123A-MGM12P2

MODÈLES MGM12P32GE et MGM12P32GA:

"Contient le module émetteur IC: 5123A-MGM12P3"

ou

"Contient IC: 5123A-MGM12P3"

L'intégrateur OEM doit être conscient qu'il ne doit pas fournir, dans le manuel d'utilisation, d'informations relatives à la façon d'installer ou de d'enlever ce module RF ainsi que sur la procédure à suivre pour modifier les paramètres liés à la radio.

13. Revision History

Revision 1.5

October, 2022

- Added timing specifications for RESETn low time and clarified V_{IL} and V_{IH} logic levels for RESETn pins in Table 4.21 General-Purpose I/O (GPIO) on page 32.
- Removed BIASPROG = 1, FULLBIAS = 0 specifications from Table 4.24 Analog Comparator (ACMP) on page 37.
- Updated Hysteresis max values in Table 4.24 Analog Comparator (ACMP) on page 37.
- Added Figure 4.2 SPI Master Timing Diagram (SMSDELAY = 1) on page 54.
- Updated 9.3 MGM12P Package Marking.
- Updated 12.1 CE and UKCA EU and UK.
- · Removed all references to RFSENSE.
- Removed references to BOOT_TX and BOOT_RX.

Revision 1.4

February, 2020

- · In the front page block diagram, updated the lowest energy mode for LETIMER.
- Updated 3.6.4 Low Energy Timer (LETIMER) lowest energy mode.
- · Added a Note about the operating voltage in 3.8.3 True Random Number Generator (TRNG).
- · Corrected the Input RF level from +10dBm to -2dBm in Table 4.1. Absolute Maximum Ratings.
- Updated the module dimensions and tolerances in Figure 9.1 Top View and Side View with Antenna Option on page 86 and Figure 9.2 Top View and Side View with U.FL Option on page 86.
- Renamed the figures in 9.1 MGM12P Package Outline.
- Renamed section 9.1 from MGM12P Dimensions to 9.1 MGM12P Package Outline.
- Removed MGM12P Module Footprint section and added Figure 9.3 Bottom View on page 87 to 9.1 MGM12P Package Outline.

Revision 1.3

May, 2019

- Updated Section 2. Ordering Information
- Updated Table 4.30 Analog Port (APORT) on page 49 Analog Port (APORT) Operation in EM2/EM3 (Typ: 67 nA)
- Updated Section 9.3 MGM12P Package Marking
- Updated 1 Mbps Bluetooth Sensitivity values in Table 4.11 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate on page 26
- Added Bluetooth sensitivity values with non-ideal signals to Table 4.11 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate on page 26 and Table 4.12 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate on page 27
- Added Chapter 10. Soldering Recommendations

Revision 1.2

January, 2019

- Updated Section 2. Ordering Information.
- Updated Section 9.1 MGM12P Package Outline
- Updated Section 9.3 MGM12P Package Marking.
- Updated Section 12.1 CE and UKCA EU and UK.

Revision 1.1

April, 2018

- Updated Section 2. Ordering Information.
- Updated Section Table 3.1 Antenna Efficiency and Peak Gain (MGM12P) on page 7.
- Updated Section 4.1.8 2.4 GHz RF Transceiver Characteristics

Revision 1.0

Minor Updates

Revision 0.2

Initial Publication

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

www.silabs.com/IoT

www.silabs.com/simplicity

www.silabs.com/quality

Support & Community www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs product shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Lab

Trademark Information

Silicon Laboratories Inc.[®], Silicon Laboratories[®], Silicon Labs[®], SiLabs[®] and the Silicon Labs logo[®], Bluegiga[®], Bluegiga Logo[®], EFM[®], EFM32[®], EFR, Ember[®], Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Redpine Signals[®], WiSeConnect, n-Link, ThreadArch[®], EZLink[®], EZRadio[®], EZRadio[®], Gecko[®], Gecko OS, Gecko OS Studio, Precision32[®], Simplicity Studio[®], Telegesis, the Telegesis Logo[®], USBXpress[®], Zentri, the Zentri logo and Zentri DMS, Z-Wave[®], and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

www.silabs.com