

M81706AFP

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

HVIC

High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
А	0.24±0.01	6.2±0.3
В	0.2±0.008	5.0±0.2
С	0.17±0.008	4.4±0.2
D	0.08 Max.	1.9 Max.
E	0.05	1.27
F	0.015±0.002	0.4±0.05
G	0.004	0.1
Н	0.06	1.5
J	0.002 Min.	0.05 Min.

Description:

M81706AFP is a high voltage Power MOSFET and IGBT module driver for half-bridge applications.

Features:

- □ Shoot Through Interlock
- □ High Voltage Level Shift
- □ Output Current +120/-250mA
- □ Half-Bridge Driver
- □ SOP-8 Package

Applications:

- HID Ballast
- □ PDP
- □ MOSFET Driver
- □ IGBT Driver
- □ Inverter Module Control

Ordering Information:

M81706AFP is a +120/-250mA, 600 Volt HVIC, High Voltage Half-Bridge Driver

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

M81706AFP

HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA

Absolute Maximum Ratings, $T_a = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	M81706AFP	Units
High Side Floating Supply Absolute Voltage	VB	-0.5 ~ 624	Volts
High Side Floating Supply Offset Voltage	V _S	V _B -24 ~ V _B +0.5	Volts
High Side Floating Supply Voltage ($V_{BS} = V_B - V_S$)	V _{BS}	-0.5 ~ 24	Volts
High Side Output Voltage	V _{HO}	V _S -0.5 ~ V _B +0.5	Volts
Low Side Fixed Supply Voltage	V _{CC}	-0.5 ~ 24	Volts
Low Side Output Voltage	V _{LO}	-0.5 ~ V _{CC} +0.5	Volts
Logic Input Voltage (H _{IN} , L _{IN})	V _{IN}	-0.5 ~ V _{CC} +0.5	Volts
Package Power Dissipation ($T_a = 25^{\circ}C$, On Board)	Pd	0.6	Watts
Linear Derating Factor (T _a > 25°C, On Board)	Kθ	6.0	mW/°C
Junction to Case Thermal Resistance	R _{th(j-c)}	50	°C/W
Junction Temperature	Tj	-20 ~ 125	°C
Operation Temperature	T _{opr}	-20 ~ 100	°C
Storage Temperature	T _{stg}	-40 ~ 125	°C

Recommended Operating Conditions

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
High Side Floating Supply Absolute Voltage	VB		V _S +10	_	V _S +20	Volts
High Side Floating Supply Offset Voltage	VS		0	—	500	Volts
High Side Floating Supply Voltage	V _{BS}	$V_B = V_B - V_S$	10	_	20	Volts
High Side Output Voltage	V _{HO}		VS	_	VB	Volts
Low Side Fixed Supply Voltage	V _{CC}		10	—	20	Volts
Logic Supply Voltage	V _{LO}		0	_	V _{CC}	Volts
Logic Input Voltage	V _{IN}	H _{IN} , L _{IN}	0	_	V _{CC}	Volts

Electrical Characteristics

 T_a = 25°C, V_{CC} = V_{BS} (= $V_B - V_S)$ = 15V unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Floating Supply Leakage Current	I _{FS}	$V_{B} = V_{S} = 600V$		_	1.0	μA
V _{BS} Standby Current	I _{BS}	$H_{IN} = L_{IN} = 0V$	_	0.2	0.5	mA
V _{CC} Standby Current	ICC	$H_{IN} = L_{IN} = 0V$	0.2	0.5	1.0	mA
High Level Output Voltage	V _{OH}	I _O = -20mA, LO, HO	13.6	14.2	—	Volts
Low Level Output Voltage	V _{OL}	I _O = 20mA, LO, HO	_	0.3	0.6	Volts
High Level Input Threshold Voltage	V _{IH}	H _{IN} , L _{IN}	2.7	_	_	Volts
Low Level Input Threshold Voltage	V _{IL}	H _{IN} , L _{IN}		_	0.8	Volts
High Level Input Bias Current	Iн	V _{IN} = 5V	_	5	20	μA
Low Level Input Bias Current	Ι _{ΙL}	$V_{IN} = 0V$	_	_	2.0	μA
V _{BS} Supply UV Reset Voltage	V _{BSuvr}		8.0	8.9	9.8	Volts
V _{BS} Supply UV Trip Voltage	V _{BSuvt}		7.4	8.2	9.0	Volts
V _{BS} Supply UV Hysteresis Voltage	V _{BSuvh}		0.5	0.7	_	Volts
V _{BS} Supply UV Filter Time	tV _{BSuv}		_	7.5	—	μs
V _{CC} Supply UV Reset Voltage	V _{CCuvr}		8.0	8.9	9.8	Volts

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

M81706AFP

HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA

Electrical Characteristics

 $T_a = 25^{\circ}C$, $V_{CC} = V_{BS}$ (= $V_B - V_S$) = 15V unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
V _{BS} Supply UV Trip Voltage	V _{CCuvt}		7.4	8.2	9.0	Volts
V _{CC} Supply UV Hysteresis Voltage	V _{CCuvh}		0.5	0.7	_	Volts
V _{CC} Supply UV Filter Time	tV _{CCuv}		_	7.5	_	μs
Output High Level Short Circuit Pulsed Current	I _{ОН}	$V_{O} = 0V, V_{IN} = 5V, P_{W} < 10\mu s$	120	200	_	mA
Output Low Level Short Circuit Pulsed Current	I _{OL}	$V_{O} = 15V, V_{IN} = 0V, P_{W} < 10\mu s$	250	350	—	mA
Output High Level ON Resistance	R _{OH}	$I_{O} = -20mA, R_{OH} = (V_{OH} - V_{O})/I_{O}$	_	40	70	Ω
Output Low Level ON Resistance	R _{OL}	$I_{O} = 20mA, R_{OL} = V_{O} / I_{O}$	_	15	30	Ω
High Side Turn-On Propagation Delay	t _{dLH(HO)}	$C_L = 1000 pF$ between HO – V_S	_	120	240	ns
High Side Turn-Off Propagation Delay	tdHL(HO)	$C_L = 1000 pF$ between HO – V_S	_	170	280	ns
High Side Turn-On Rise Time	t _{rH}	$C_L = 1000 pF$ between HO – V_S	_	130	220	ns
High Side Turn-Off Fall Time	t _{fH}	$C_L = 1000 pF$ between HO – V_S	_	50	80	ns
LowSide Turn-On Propagation Delay	tdLH(LO)	C _L = 1000pF between LO – GND	_	120	240	ns
Low Side Turn-Off Propagation Delay	t _{dHL(LO)}	$C_L = 1000 pF$ between LO – GND	_	170	280	ns
Low Side Turn-On Rise Time	t _{rL}	$C_L = 1000 pF$ between LO – GND	_	130	220	ns
Low Side Turn-Off Fall Time	t _{fL}	C _L = 1000pF between LO – GND	_	50	80	ns
Delay Matching, High Side and Low Side Turn-On	Δt_{dLH}	t _{dLH(HO)} [–] t _{dLH(LO)}	_	0	30	ns
Delay Matching, High Side and Low Side Turn-Off	Δt_{dHL}	t _{dHL(HO)} - t _{dHL(LO)}	_	0	30	ns

FUNCTION TABLE (X : HORL)

HIN	LIN	V _{BS} U _V	V _{CC} U _V	HO	LO	Behavorial State
L	L	Н	Н	L	L	LO = HO = Low
L	Н	Н	Н	L	Н	LO = High
Н	L	Н	Н	Н	L	HO = High
н	Н	Н	Н	L	L	LO = HO = Low
Х	L	L	Н	L	L	LO = Low, V _{BS} U _V Tripped
Х	Н	L	Н	L	Н	LO = High, V _{BS} U _V Tripped
L	Х	Н	L	L	L	LO = Low, VCC Uv Tripped
Н	Х	Н	L	L	L	HO = LO = Low, V _{CC} U _V Tripped

NOTE: "L" state of V_{BS} U_V, V_{CC} U_V means that U_V trip voltage. In the case of both input signals (H_{IN} and L_{IN}) are "H", output signals (HO and LO) become "L".

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

M81706AFP

HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA

TIMING DIAGRAM

1. Input/Output Timing Diagram

HIGH ACTIVE – When input signal (H_{IN} or L_{IN}) is "H", then output signal (HO or LO) is "H". In the case of both input signals (H_{IN} and L_{IN}) are "H", then output signals (HO and LO) become "L".

2. V_{CC}(V_{BS}) Supply Under Voltage Lockout Timing Diagram

When V_{CC} supply voltage keeps lower UV trip voltage (V_{CCuvt} = V_{CCuvr} – V_{CCuvh}) for V_{CC} supply UV filter time, output signal becomes "L". And then, when V_{CC} supply voltage is higher than UV reset voltage, output signal LO becomes "H".

When V_{CC} supply voltage keeps lower UV trip voltage ($V_{CCuvt} = V_{CCuvr} - V_{CCuvh}$) for V_{CC} supply UV filter time, output signal becomes "L". And then, when V_{CC} supply voltage is higher than UV reset voltage, input signal (LIN) is "L"; output signal HO becomes "H".

3. Allowable Supply Voltage Transient

It is recommended supplying V_{CC} first and V_{BS} second. In the case of shutting off supply voltage, shut off V_{BS} first and shut off V_{CC} second. At the time of starting V_{CC} and V_{BS}, power supply should be increased slowly. If it is increased rapidly, output signal (HO or LO) may be "H".

Note: This device has high voltage between closely spaced pins. In most applications, supplemental insulation will be required.