

RFPD2650

GaAs/GaN Power Doubler Hybrid 45MHz to 1003MHz

The RFPD2650 is a Hybrid Power Doubler amplifier module. The part employs GaAs pHEMT die and GaN HEMT die, has extremely high output capability, and is operated from 45MHz to 1003MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability. DC current of the device can be externally adjusted for optimum distortion performance versus power consumption over a wide range of output level.

Box with 50 Pieces

Ordering Information

Absolute Maximum Ratings

RFPD2650

Parameter	Rating	Unit						
RF Input Voltage (single tone)	75	dBmV						
DC Supply Over-Voltage (5 minutes)	30	V						
Storage Temperature	-40 to +100	°C						
Operating Mounting Base Temperature	-30 to +100	°C						

Package: SOT-115J

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- Extremely High Output Capability
- 22.5dB Min. Gain at 1003MHz
- 450mA Max. at 24V_{DC}
- Extra Pin For Current Adjustment

Applications

 45MHz to 1003MHz CATV Amplifier Systems

Caution! ESD sensitive device.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Nominal Operating Parameters

Specification	1.1					
Parameter	Min	Тур	Max	Unit	Condition	
General Performance					V+ = 24V; T _{MB} = 30°C; Z _S = Z _L = 75Ω, IDC set > 370mA	
Power Gain	21.0	21.5	22.0	dB	f = 45MHz	
	22.5	23.0	24.0	dB	f = 1003MHz	
Slope ^[1]	1.0	1.5	2.5	dB	f = 45MHz to 1003MHz	
Flatness of Frequency Response			0.8	dB	f = 45MHz to 1003MHz	
Input Return Loss	20			dB	f = 45MHz to 320MHz	
	19			dB	f = 320MHz to 640MHz	
	18			dB	f = 640MHz to 870MHz	
	16			dB	f = 870MHz to 1003MHz	
	20			dB	f = 45MHz to 320MHz	
	19			dB	f = 320MHz to 640MHz	
Output Return Loss	18			dB	f = 640MHz to 870MHz	
	17			dB	f = 870MHz to 1003MHz	
Noise Figure		3.5	4.5	dB	f = 50MHz to 1003MHz	
Total Current Consumption (DC)		430.0	450.0	mA	[5]	
Distortion Data					V+ = 24V; T_{MB} = 30°C; Z_S = Z_L = 75 Ω , IDC = IDC typical ^[5]	
СТВ		-73	-68	dBc		
XMOD		-65	-60	dBc	V _o = 61dBmV at 1000MHz, 18dB extrapolated tilt, 79 analog channels	
CSO		-76	-70	dBc	plus 75 digital channels (-6dB offset) ^{[2][5]}	
CIN	55	60		dB		
Distortion Data					V+ = 24V; T_{MB} = 30°C; Z_S = Z_L = 75 Ω , IDC = IDC typical ^[5]	
СТВ		-77		dBc		
XMOD		-71		dBc	$V_0 = 56.4$ dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog	
CSO		-71		dBc	channels plus 75 digital channels (-6dB offset) ^{[3][5]}	
CIN		67		dB		
Distortion Data					V+ = 24V; T _{MB} = 30°C; Z _S = Z _L = 75Ω, IDC = 370mA	
СТВ		-70		dBc		
XMOD		-62		dBc	$V_{\rm O}$ = 56.4dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset)^{[3][5]}	
CSO		-71		dBc		
CIN		60		dB		

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFPD2650

Parameter	Specification			Unit	Condition
	Min	Тур	Max	Unit	Condition

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +43dBmV to +52.4dBmV tilted output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.

3. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +43dBmV to +50.0dBmV tilted output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.

4. Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

Carrier to Intermodulation Noise (CIN) - The CIN parameter is defined by ANSI/SCTE 17 (Test Procedure for carrier to noise). 5. Test condition: Pin 4 not connected

Current Adjustment Using Hybrid Pin 4

The RFPD2650 can be operated over a wide range of current to provide maximum required performance with minimum current consumption. A single external resistor connected between pin 4 and GND allows variation of current between 430mA and 220mA (typ.). Within the recommended range of current between 430mA and 370mA gain (S21) change is less than 0.2dB and noise figure change is less than 0.1dB. If pin 4 is not connected the devices operates at maximum current, see table below.

Examples of connecting pin 4:

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS141021

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Change of Distortion Performance Over Current

Test Condition: V+ = 24V; T_{MB} = 30°C; Z_S = Z_L = 75 Ω ; 79 ch. 7dB tilted; V_O = 50dBmV at 550MHz, plus 75 digital channels (-6dB offset)

DS141021

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Package Drawing (Dimensions in millimeters)

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

DS141021