

[MG2471] Datasheet

(No. ADS0901)

V1.2

The reproduction of this datasheet is NOT allowed without approval of RadioPulse Inc. All information and data contained in this datasheet are subject to change without notice. This publication supersedes and replaces all information previously supplied. RadioPulse Inc. has no responsibility to the consequence of using the patents describes in this document.

REVISION HISTORY

Version	Date	Description
V1.0	2014.3.27	 The first version release.
		Updated Sec 8.15
V1.1	2014.5.9	 Unified the abbreviations for Write-Only and Read-Only
		(WO: Write-Only, RO: Read-Only)
		Updated Sec 5.8, Crystal Oscillator parameters (TYP and
V1.2	2014.9.1	MAX value for ESR, C_0 and C_L) are updated.
V1.2	2014.0.1	• Table 3. Bill of Materials in Sec. 6 is updated. C ₁₁ and C ₁₂
		is changed from 30pF to 13pF.

CONTENTS

1.	INT	RODUCTION	8
-	1.1.	APPLICATIONS	8
2.	KEY	FEATURES	9
3.		OCK DIAGRAM	
5.			
4.	PIN	DESCRIPTION	13
5.	ELE	CTRICAL CHARACTERISTICS	17
I	5.1.	Absolute Maximum Ratings	
I	5.2.	RECOMMENDED OPERATING CONDITIONS	17
I	5.3.	DC CHARACTERISTICS	17
I	5.4.	CURRENT CONSUMPTION AND TIMING CHARACTERISTICS	19
I	5.5.	RF RECEIVE SECTION	19
I	5.6.	RF TRANSMIT SECTION	20
I	5.7.	Frequency Synthesizer	
I	5.8.	32MHz Crystal Oscillator	21
I	5.9.	16MHz RC Oscillator	21
I	5.10.	32kHz RC Oscillator	22
ļ	5.11.	32.768kHz Crystal Oscillator	
ļ	5.12.	Temperature Sensor	
ļ	5.13.	ADC	
ļ	5.14.	Flash Memory	23
	5.14	4.1. Flash memory characteristics	
	5.14	1.2. Flash memory and page size	
ļ	5.15.	Typical Performance Curves	23
6.	REF	ERENCE APPLICATION CIRCUITS	24
7.	мс	U SUBSYSTEM	26
-	7.1.	Memory Organization	
	7.1.		
	7.1.		
	7.1.		
	7.1.		
-	7.2.	CLOCK	
	7.2.		
	7.2.		
	7.2.		

7.3.	Resets	
7.4.	INTERRUPTS	
7.4	4.1. Interrupt Sources	
7.4	4.2. Interrupt Enable	
7.4	4.3. Interrupt Priority	
8. PE	RIPHERALS	
8.1.	Clock and Reset Controller	
8.2.	INPUT/OUTPUT PORTS(GPIO)	
8.2	2.1. Port Data Registers(SFR area)	
8.2	2.2. Port Direction Registers(SFR area)	
8.2	2.3. Port Input Enable Registers (SFR area)	
8.2	2.4. Port Drive Strength Selection Registers (SFR area)	
8.2	2.5. Port Pull-up/down Control Registers	
8.2	2.6. Port Interrupt Control Registers (SFR area)	
8.3.	TIMER 0/1	
8.4.	TIMER 2/3	
8.5.	PWMs	
8.6.	Watchdog Timer	
8.7.	UART 0/1	71
8.8.	SPI MASTER/SLAVE	
8.9.	I2C MASTER/SLAVE	
8.10.		
8.11.		
	11.1. I2S	
8.1	11.2. I2S FIFO	
8.12.	(-)	
8.13.		
8.14.		
8.15.		
8.16.		
8.17.		
8.18.		
8.19.		
8.20.		
8.21.	Always-ON Registers	
9. TR	ANSCEIVER	116
9.1.	MAC	
9.1	1.1. Receive Mode	

9.1.2.	Transmit Mode	
9.1.3.	Data Encryption and Decryption	
9.2. Pł	ΗΥ	
9.2.1.	Interrupt	
9.2.2.	Data Rate	
9.2.3.	Forward Error Correction	
9.2.4.	Packet Format	
9.2.5.	Clear Channel Assessment	
9.2.6.	Link Quality Indicator	
9.2.7.	Received Signal Strength Indicator	
9.2.8.	RADIO	
9.3. O	perating Modes	
10. IN-9	SYSTEM PROGRAMMING (ISP)	141
11. PAC	KAGE INFORMATION	142
11.1.	MG2471 DIMENSIONS (QFN 48-PIN)	
11.2.	Marking	

FIGURES

FIGURE 1. FUNCTIONAL BLOCK DIAGRAM OF MG2471	11
FIGURE 2. PINOUT TOP VIEW OF MG2471	13
FIGURE 3. MG2471 TYPICAL APPLICATION CIRCUIT	24
FIGURE 4. ADDRESS MAP OF PROGRAM MEMORY	26
FIGURE 5. ADDRESS MAP OF DATA MEMORY	27
FIGURE 6. GPRS ADDRESS MAP	28
FIGURE 7. CLOCK SYSTEM OVERVIEW	33
FIGURE 8. INTERRUPTS OVERVIEW OF MG2471	39
FIGURE 9. CLOCKS STRUCTURE OF THE MAC/PHY BLOCK	47
FIGURE 10. PORT-0/1/3 PAD BLOCK DIAGRAM	53
FIGURE 11. TIMER0 MODE0	65
FIGURE 12. TIMER0 MODE1	65
FIGURE 13. TIMER0 MODE2	65
FIGURE 14. TIMER0 MODE3	66
FIGURE 15. SPI DATA TRANSFER	83
FIGURE 16. I2C SINGLE BYTE WRITE, THEN REPEATED START AND SINGLE BYTE READ.	87
FIGURE 17. THREE METHODS IN I2S INTERFACE	95
FIGURE 18. QUADRATURE SIGNAL TIMING BETWEEN XA AND XB	
FIGURE 19. MAC BLOCK DIAGRAM	
FIGURE 20. BASEBAND PHY	127
FIGURE 21. CONVOLUTIONAL ENCODER WITH RATE OF 1/2	131
FIGURE 22. HIGH DATA RATE PACKET FORMAT	132
FIGURE 23. LOW DATA RATE PACKET FORMAT COMPARED TO THE 250KBPS MODE	132
FIGURE 24. MEASURED RSSI (TYPICAL) VERSUS RX INPUT POWER	136
FIGURE 25. RF AND ANALOG BLOCK DIAGRAM	137
FIGURE 26 MG2471 STATE TRANSITION DIAGRAM	139
FIGURE 27. PACKAGE DRAWING-QFN48	142
FIGURE 28. CHIP MARKING	143

TABLES

TABLE 1. PIN DESCRIPTION	13
TABLE 2. I/O PINS EQUIVALENT CIRCUIT SUMMARY	15
TABLE 3. BILL OF MATERIALS FOR FIGURE 3	25
TABLE 4. SFR (SPECIAL FUNCTION REGISTER) MEMORY MAP	29
TABLE 5. INTERRUPT DESCRIPTIONS	40
TABLE 6. PORT-0/1/3 OPERATION TRUTH TABLE	53
TABLE 7. UART0 INTERRUPT LIST	73
TABLE 8. UART1 INTERRUPT LIST	78
TABLE 9. DATA RATE MODES	131
TABLE 10. PUNCTURING PATTERN	132

1. INTRODUCTION

MG2471 is a true 2.4 GHz system-on-chip (SOC) designed for low-power and low-cost applications based on IEEE802.15.4 and RF4CE. The MG2471 uses the ISM band of 2.4 ~ 2.48 GHz. In addition to the standard data-rate specified in IEEE802.15.4, enhanced multiple data-rate modes (31.25Kbps ~ 1Mbps) with channel coding are supported.

MG2471 combines an advanced RF transceiver with an industry-standard enhanced 8051 MCU, a baseband PHY, a MAC with AES-128 HW engine, an in-system programmable 64KB flash memory, a 6-KB RAM, and many other application-specific peripherals. This chip is best for very low-power RF4CE remote control applications.

1.1. APPLICATIONS

- 2.4 GHz IEEE 802.15.4 Applications
- RF4CE Remote Control Systems
- Lighting Systems
- Home/Building Automation
- Industrial Control and Monitoring
- Energy Management
- Low Power Wireless Sensor Networks
- Consumer Electronics
- Health-care equipment
- Toys

2. KEY FEATURES

RF Transceiver

- Single-chip 2.4GHz RF Transceiver
- Low Power Consumption
- High Sensitivity of –98dBm at 250kbps
- No External T/R Switch or Filter needed
- On-chip VCO, LNA, and PA
- Programmable Output Power up to +9.0dBm
- Direct Sequence Spread Spectrum
- O-QPSK Modulation
- Scalable Data Rate including 250Kbps specified in IEEE802.15.4: 31.25Kbps ~ 1Mbps
- RSSI Measurement
- Compliant to IEEE802.15.4

Hardwired MAC

- Two 256-byte circular FIFOs
- FIFO management
- AES Encryption/Decryption Engine(128 bit)
- CRC-16 Computation and Check

8051-Compatible MCU

- 8051 Compatible (single cycle execution)
- 64KB Embedded Flash Memory
- 6KB Data Memory
- 128-byte CPU dedicated Memory
- 1KB Boot ROM
- Dual DPTR Support
- I2S/PCM Interface with two 256-byte FIFOs
- Two High-Speed UARTs with Two 16-byte FIFOs(up to 1Mbps)
- Four Timer/Counters
- 5 PWM channels
- Watchdog Timer
- Sleep Timer using the 32kHz RC-OSC clock
- Quadrature Signal Decoder
- 22 General Purpose I/Os
- Internal 32kHz RC oscillator for Sleep Timer
- 16 MHz RC oscillator for the fast start-up from reset & power-down mode
- On-chip Power-on-Reset and Brown-out detector
- 4-channel 12-bit ADC(ENOB > 10-bit)
- SPI Master/Slave Interface with two 16-byte FIFOs
- I2C Master/Slave with 16-byte FIFO
- Programmable IR(Infra-Red) Modulator
- ISP (In System Programming)
- External clock output function(500KHz, 1/2/4/8/16/32 MHz selectable)

Clock Inputs

■ 32MHz Crystal for System Clock

Power

- 1.8V(Core)/2.0~3.6V(I/O) Operation
- Power Management Scheme with Deep Sleep Mode
- Separate On-chip Regulators for Analog and Digital Circuitry.
- Power Supply Range for Internal Regulator(2.0V(Min) ~ 3.6V(Max))

Package

■ Lead-Free 48-pin QFN Package (7mm x 7mm)

3. BLOCK DIAGRAM

[Figure 1] shows the block diagram of MG2471. The MG2471 consists of a 2.4GHz RF, a baseband PHY, a MAC hardware engine, an industry-standard enhanced 8051 MCU, an insystem programmable flash memory 64KB, a 6KB data RAM, and rich peripherals such as I2C, 5-channel PWM.

Figure 1. Functional Block Diagram of MG2471

MG2471 integrates an RF transceiver compliant to IEEE802.15.4 RF. The RF transceiver operates on an ISM band of $2.4 \sim 2.48$ GHz with excellent receiver sensitivity and programmable output power up to +8.8dBm.

The MAC block supports IEEE802.15.4 compliant functions and it is located between the microprocessor and the baseband modem. MAC block includes FIFOs for transmitting/receiving packets, an AES engine for security operation, a CRC and related control circuit. In addition, it supports automatic CRC check and address decoding.

MG2471 integrates a high performance embedded microcontroller, compatible to industry standard 8051 microcontroller in an instruction level. This embedded microcontroller has 8-bit operation architecture sufficient for controller applications. The embedded microcontroller has 4-stage pipeline architecture to improve the performance over previous compatible chips making it capable of executing simple instructions during a single cycle.

The memory part of the embedded microcontroller consists of program memory and data memory. The data memory has 2 memory areas. For more detailed explanations, refer to <u>Sec 7.1.2. Data Memory</u>.

MG2471 includes 22 GPIOs and various peripheral circuits to aid in the development of the application circuit with an interrupt handler to control the peripherals. MG2471 uses 32MHz

crystal oscillator for RF PLL and 8MHz clock generated from 32MHz in clock generator is used as the default clock of 8051 MCU subsystem. The clocks for MAC, a baseband modem are separately controlled by the internal clock and reset block.

4. PIN DESCRIPTION

The pin-out diagram of MG2471 is shown in [Figure 2] and the detailed description is in [Table 1].

Note: The exposed ground pad is located at the bottom of the chip and electrically connected to the die ground inside the package. It must be connected to a solid ground plane.

Radio, Synth	Table 1. Pin Description Radio, Synthesizer, and Oscillator					
Name	Pin	Туре	Description			
AVDD3V1	16	Power	2.0V to 3.6V RF/Analog power supply connection			
AVDD3V2	7	Power	2.0V to 3.6V RF/Analog power supply connection			
ADCOUPL1	12	Power 1.8V RF/Analog power supply decoupling. Do not use for supplying external circuits.				
ADCOUPL2	6	Power	1.8V RF/Analog power supply decoupling. Do not use for supplying external circuits.			
ADCOUPL3	2	Power	1.8V RF/Analog power supply decoupling. Do not use for supplying external circuits.			
AVDD18V	48	Power	1.8V RF/Analog power supply connection			
RF_P	4	RF I/O	Positive RF input signal to LNA in RX mode Positive RF output signal from PA in TX mode			

			It should be biased by ADCOUPL3. Refer to [Figure 3] in Sec.6.		
			Negative RF input signal to LNA in RX mode		
			Negative RF output signal from PA in TX mode		
RF_N	3	RF I/O	It should be biased by ADCOUPL3. Refer to [Figure 3] in		
			Sec.6.		
RBIAS	5	Analog I/O	External precision bias resistor(510kohm) to generate the		
	5		reference current		
ACH0	8	Analog I/O	ADC input		
ACH1	9	Analog I/O	ADC input		
ACH2	10	Analog I/O	ADC input		
ACH3	11	Analog I/O	ADC input		
Digital and O	Oscillato	r			
Name Pin Type Description					
DVDD3V1	18	Power	2.0V to 3.6V Digital power supply connection		
DVDD3V2	25,34	Power	2.0V to 3.6V Digital power supply connection		
			1.8V Digital power supply decoupling.		
DVDD1	19	Power	*Note: Do not use for supplying external circuits.		
		i ower	*Note: It should not be connected together with DVDD2 (pin		
			44).		
			1.8V Digital power supply decoupling.*Note: Do not use for supplying external circuits.		
DVDD2	44	Power	*Note: It should not be connected together with DVDD1 (pin		
			19).		
DXOSC18V	47	Power	1.8V Digital power supply connection		
RESETB	17	Digital input	Reset, active low		
MS[0]	13	Digital input	Mode Selection		
			Value Mode Configuration		
MS[1]	14	Digital input	000 Normal mode with internal digital regulator		
MS[2]	15	Digital input	100 ISP mode with internal digital regulator		
		- ·	others Reserved		
P0[0]	43	Digital I/O	Port P0.0/I2SRX_DI/PWM0, 16mA drive capability		
P0[1]	42	Digital I/O	Port P0.1/I2SRX_LRCLK/PWM1, 16mA drive capability		
P0[2]	41	Digital I/O	Port P0.2/I2SRX_BCLK/PWM2, 16mA drive capability		
P0[3]	40	Digital I/O	Port P0.3/I2SRX_MCLK/PWM3, 16mA drive capability		
P0[4] P0[5]	39 38	Digital I/O Digital I/O	Port P0.4/I2STX_DO/PWM4, 16mA drive capability Port P0.5/I2STX_LRCLK/PTC_GATE0		
P0[5] P0[6]	37	Digital I/O	Port P0.6/I2STX_ERCERVETC_GATED		
P0[0] P0[7]	36	Digital I/O	Port P0.7/I2STX_BCEKITC_GATE2		
P1[0]	26	Digital I/O	Port P1.0/RXD1		
P1[1]	20	Digital I/O	Port P1.1/TXD1		
		-	Port P1.3/QUADZA/PTC GATE3/IR TX/CLK OUT		
P1[3]	23	Digital I/O	/XOSC32K_OUT		
P1[4]	22	Digital I/O	Port P1.4/QUADZB/EXT_RTC_CLK/PTC_GATE4		
		-	/XUSU32K_IN		
P1[6]	21	Digital I/O			
P1[7]	20	Digital I/O	Port P1.7/I2C_SDA/TRSW		

P3[0]	35	Digital I/O	Port P3.0/RXD0/QUADXA	
P3[1]	33	Digital I/O	Port P3.1/TXD0/QUADXB	
P3[2]	32	Digital I/O	Port P3.2/nINT0	
P3[3]	31	Digital I/O	Port P3.3/nINT1	
P3[4]	30	Digital I/O	Port P3.4/RTS0/QUADYA/SPIDI/T0	
P3[5]	29	Digital I/O	Port P3.5/CTS0/QUADYB/SPIDO/T1	
P3[6]	28	Digital I/O	Port P3.6/RTS1/SPICLK	
P3[7]	27	Digital I/O	Port P3.7/CTS1/SPICSN	
XOSCI	46	Analog I/O	32MHz crystal oscillator pin	
XOSCO	45	Analog I/O	32MHz crystal oscillator pin or external clock input	
NC	1		Do not connect.	
Ground				
Exposed		Ground	Ground for RF, Analog, digital core, and I/O	
bottom		Cround		

Table 2. I/O Pins Equivalent Circuit Summary

Equivalent Circuit Schematic	Reset Status	Note
GPIO (P0[7:0], P1[1:0], P1[7:6], P3[7:0])		
	Input with pull-up	I/O with the programmable pull-up/pull-down function
CDIO with 22 769kHz an otal agaillator buffer (

GPIO with 32.768kHz crystal oscillator buffer (P1[4:3])

5. ELECTRICAL CHARACTERISTICS

5.1. Absolute Maximum Ratings

Parameter		Min.	Max	Unit	
Supply voltage(AVDD3V1,AVDD3V2, DVDD3V1,DVDD3V2)		-0.3	3.6	V	The voltage of all supply pins must be same.
Core voltage(ADCOUPL1,ADCOU PL2,ADCOUPL3,AVDD18V,D VDD1,DVDD2,DXOSC18V)		-0.3	2	V	
Storage Tempe	erature	-40	150	°C	
ESD			2	kV	All pads, according to human- body model(JEDEC STD 22)
E3D	CDM		500	V	According to charged-device model(JEDEC STD 22)

Exceeding one or more of these ratings may cause permanent damage to the device. These are stress ratings only, and the functional operation of the device at these or any other conditions beyond those indicated under "ELECTRICAL SPECIFICATIONS" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: These values were obtained under worst-case test conditions specially prepared for the MG2471 and these conditions are not sustained in normal operation environment.

CAUTION: ESD sensitive device. Precaution should be used when handling the device to prevent permanent damage.

5.2. Recommended Operating Conditions

Parameter	MIN	MAX	UNIT
Operating ambient temperature range, T_{OP}	-40	85	°C
Operating supply voltage, VDD (AVDD3V1,AVDD3V2,DVDD3V1,DVDD3V2)	2	3.6	V
Voltage on any digital pin	-0.3	VDD	V

5.3. DC Characteristics

All voltage values are based on Ground.

Param	neter	MIN	ТҮР	МАХ	UNIT
VDD	Operating Supply Voltage VDD=3.30V VDD=3.00V VDD=2.56V VDD=2.20V	3.00 2.70 2.30 2.00		3.60 3.30 2.82 2.42	V

r		1			i
V _{IH}	Logic-high Input Voltage VDD=3.30V VDD=3.00V VDD=2.56V VDD=2.20V	2.10 1.90 1.70 1.50		3.60 3.30 2.82 2.42	V
V _{IL}	Logic-low Input Voltage VDD=3.30V VDD=3.00V VDD=2.56V VDD=2.20V	-0.3 -0.3 -0.3 -0.3		0.8 0.7 0.6 0.5	V
R _{PU}	Pull-up Resistor VDD=3.30V VDD=3.00V VDD=2.56V VDD=2.20V	34K 37K 44K 53K	48K 54K 66K 81K	72K 82K 101K 125K	Ω
R _{PD}	Pull-down Resistor VDD=3.30V VDD=3.00V VDD=2.56V VDD=2.20V	28K 30K 33K 39K	47K 51K 62K 76K	90K 102K 128K 161K	Ω
V _{OL}	Output Low Voltage			0.4	V
V _{OH}	Output High Voltage	VDD*0.73			V
I _{OL}	Low-level Output Current @V _{OL} (max) ¹ VDD=3.30V (DS=0) VDD=3.00V (DS=0) VDD=2.56V (DS=0) VDD=2.20V (DS=0) VDD=3.30V (DS=1) VDD=3.00V (DS=1) VDD=2.56V (DS=1) VDD=2.20V (DS=1)	6.3 5.7 4.8 3.9 9.5 8.6 7.2 5.9			mA
I _{OH}	High-level Output Current @V _{OH} (min) ² VDD=3.30V (DS=0) VDD=3.00V (DS=0) VDD=2.56V (DS=0) VDD=2.20V (DS=0) VDD=3.30V (DS=1) VDD=3.00V (DS=1) VDD=2.20V (DS=1) VDD=2.20V (DS=1)	7.4 5.9 4.3 3.3 11.2 8.9 6.5 5.0			mA

 $^{^1\,}$ For P0[7:5], P1[1:0], P1[4:3], P1[7:6], and P3[7:0] pins $^2\,$ For P0[7:5], P1[1:0], P1[4:3], P1[7:6], and P3[7:0] pins

5.4. Current Consumption and Timing Characteristics

T - 25°C		upleas otherwise noted
$1_{OP} - 25 C$	VDD-3.0V,	unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
MCU active. No radio and peripherals (UART1&RNG) active. @ MCU clock = 8MHz @ MCU clock = 16MHz		4.2 5.2		mA
RX mode. MCU active @ MCU clock = 8MHz		24.9		mA
TX mode. MCU active @ MCU clock = 8MHz @ maximum transmit output power @ 0dBm		36.5 22.5		mA
Power mode1. Digital regulator on, 16MHz RCOSC and 32MHz crystal oscillator off, 32kHz RCOSC, POR, BOD, and sleep timer active.		35.3	44.4	μA
Power mode1. Digital regulator on, 16MHz RCOSC, 32MHz crystal oscillator off, 32.768kHz crystal oscillator, POR, BOD, and sleep timer active.		45.3	54.4	μA
Power mode2. Digital regulator off, 16MHz RCOSC, 32MHz crystal oscillator off, 32kHz RCOSC and sleep timer active.		1.8	4.1	μA
Power mode2. Digital regulator off, 16MHz RCOSC, 32MHz crystal oscillator off, 32.768kHz crystal oscillator and sleep timer active.		11.8	14.1	μA
Power mode3. Digital regulator off, 16MHz RCOSC, 32MHz crystal oscillator off, 32kHz RCOSC(32.768kHz crystal oscillator) and sleep timer off.			1	μΑ
Wake-up and timing				1
Power mode1 → MCU Active Digital regulator on, 16MHz RCOSC and 32MHz crystal oscillator off. Start-up of 16MHz RCOSC		5		μs
Power mode2 → MCU Active Digital regulator off, 16MHz RCOSC and 32MHz crystal oscillator off. Start-up of regulator and 16MHz RCOSC		100		μs
MCU Active \rightarrow TX or RX Initially running on 16MHz RCOSC, Added start-up time of 32MHz crystal oscillator.		992		μs
TX/RX and RX/TX turnaround			192	μs

5.5. RF Receive Section

Measured on 2-layer reference design with T_{OP} =25°C, VDD=3.0V, and fc=2450MHz, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
RF frequency range ³ (center frequency)	2405		2480	MHz
Maximum input level (PER=1%)				
@ 1000kbps		-6		
@ 500kbps		-9		
@ 250kbps		-2		dBm
@ 125kbps		-4		
@ 62.5kbps		5		
@ 31.25kbps		5		
Spurious radiation				dBm
@ 30MHz – 1000MHz		-73.7		UDIII

³ Extended range: 2394~2507MHz

@ 1GHz – 12.75GHz	-73.7		
Received RF bandwidth	2		MHz
Channel spacing ⁴	5		MHz
Receiver sensitivity (PER≤1%, PSDU length of 20-byte) @ 1000kbps @ 500kbps @ 250kbps @ 125kbps @ 62.5kbps @ 31.25kbps	-93 -91 -98 -99 -103 -105		dBm
Adjacent channel rejection (Sensitivity+3, adjacent modulated channel at ±5MHz, PER=1%, 250kbps) +5MHz -5MHz	27 27		dB
Alternate channel rejection (Sensitivity+3, adjacent modulated channel at ±10MHz, PER=1%, 250kbps) +10MHz -10MHz	48 47		dB
Others channel rejection (Sensitivity+3, adjacent modulated channel at over ±15MHz, PER=1%, 250kbps) ≥+15MHz ≥-15MHz	53 52		dB
Co-channel rejection (Sensitivity+3. Undesired IEEE 802.15.4 modulated signal at the same frequency. Signal level for PER=1%, 250kbps)	-8.9		dB
Blocking/desensitization -250MHz -100MHz -50MHz +50MHz +100MHz +250MHz	-25 -35 -38 -37 -35 -31		dBm
RSSI dynamic range		80	dB
RSSI accuracy	± 3		dB

5.6. RF Transmit Section

Measured on 2-layer reference design with T_{OP} =25°C, VDD=3.0V, and fc=2450MHz, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
RF frequency range⁵(center frequency)	2405		2480	MHz
TX output power (using the recommended matching circuit)		+9.0		dBm
Transmit chip rate		2		Mcps
Error vector magnitude (EVM)		7		%
Harmonics 2 nd harmonic 3 rd harmonic		-43.9 -51.0		dBm
Spurious emission (complies with EN 300-440, FCC and ARIB STD-T66) 30Hz ~ 1GHz 1GHz ~ 12.75GHz		< -75 < -43.9		dBm

⁴ Specified in IEEE Standard 802.15.4[™]
 ⁵ Extended range: 2394~2507MHz

1.8 ~ 1.9GHz	< -75	
5.15 ~ 5.3GHz	< -75	

5.7. Frequency Synthesizer

 T_{OP} =25°C, VDD=3.0V, and fc=2450MHz, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
Phase noise, unmodulated carrier				
@ ±100kHz offset		-76.5		
@ ±1MHz offset		-99.6		
@ ±2MHz offset		-108.6		dBc/Hz
@ ±3MHz offset		-112.7		UDC/11Z
@ ±5MHz offset		-115.2		
@ ±10MHz offset		-121.2		
@ ±50MHz offset		-140.9		
Lock time		97		μs

5.8. 32MHz Crystal Oscillator

 T_{OP} =25°C, DXOSC18V=1.8V, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
Crystal frequency		32		MHz
Crystal frequency accuracy requirement	-40		40	ppm
Equivalent series resistance(ESR)		30 ⁶	60 ⁷	Ω
Crystal shunt capacitance(C ₀)		3	5	pF
Crystal load capacitance(CL)		13 ⁶	16 ⁷	pF
Start-up time			0.8	ms

5.9. 16MHz RC Oscillator

 T_{OP} =25°C, DXOSC18V=1.8V, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
Frequency		16		MHz
Frequency accuracy before calibration	-25		25	%
Frequency accuracy after calibration	-3		3	%
Initial calibration time		50		μs
Start-up time			1	μs

⁶ The negative resistance of driving circuit is five times larger than the ESR of crystal oscillator with crystal satisfying above TYP conditions.

⁷ The negative resistance of driving circuit is two times larger than the ESR of crystal oscillator with crystal satisfying above MAX conditions.

5.10. 32kHz RC Oscillator

 T_{OP} =25°C, VDD=3.0V, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
Calibrated frequency		32.787		kHz
frequency accuracy after calibration	-0.3		0.3	%
Initial calibration time		1		ms
Start-up time			100	μs

5.11. 32.768kHz Crystal Oscillator

 $T_{\text{OP}}\text{=}25^\circ\!\text{C},$ VDD=3.0V, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
Frequency		32.768		kHz
Crystal frequency accuracy requirement	-40		40	ppm
Equivalent series resistance(ESR)		50	100	kΩ
Crystal shunt capacitance(C ₀)		0.9		pF
Crystal load capacitance(CL)		12.5		pF
Start-up time		1.2		S

5.12. Temperature Sensor

VDD=3.0V, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
Output at -40 °C		-295		
Output at 25℃		76		
Output at 85℃		418		
Temperature coefficient		5.703		/℃

All measurement results are obtained using the 12-bit ADC.

5.13. ADC

 $T_{\text{OP}}\text{=}25^\circ\!\text{C},$ VDD=3.0V, unless otherwise noted.

Parameter(Condition)	MIN	TYP	MAX	UNIT
Input voltage	0		VDD	V
Input resistance		150		kΩ
Full-scale signal			3	V
Effective number of bits(ENOB) Single-ended input, 12bit setting		10.8		bits
Signal to noise and distortion(SINAD) Single-ended input, 12bit setting		66.78		dB
Current consumption		0.46		mA
Internal reference voltage		1.25		V

5.14. Flash Memory

5.14.1. Flash memory characteristics

Characteristic	Symbol	Conditions	MIN	TYP	MAX	UNIT
Endurance	Nendu	20ms erase and 20 us program time at 1.8V	20,000			cycles
Data retention	Tret	25 °C	100			years

5.14.2. Flash memory and page size

Name	Size	Unit
Flash main memory block	65,536	bytes
Flash information block	1,024	bytes
Flash page size	512	bytes

5.15. Typical Performance Curves

 T_{OP} =25°C, VDD=3.0V, and fc=2450MHz, unless otherwise noted. All parameters measured on 2-layer reference design.

6. REFERENCE APPLICATION CIRCUITS

A typical application diagram of the MG2471 is shown in [Figure 3]. Only a few external components are required for the operation of the MG2471. [Table 3] describes the external components including decoupling capacitors.

The inductor, L1 is used as a matching component for the LNA and as an output load for the PA, respectively. The components near the RF_P/RF_N pins, L2, L3, C2, and C3 form a balun which converts the differential RF signals to a single-ended RF signal. And, L4, C4, and C5 form a LC harmonic filter to suppress the TX output harmonics. In addition, C4 is needed for DC blocking. All together with adequate values, they also transform the impedance to match a 50-Ohm antenna.

As shown in [Figure 3], RF_P and RF_N are biased by ADCOUPL3 through L1 and L3.

The 32MHz crystal provides the reference frequency source for MG2471. C11 and C12 are loading capacitors of it. C_{D0} , C_{D1} , C_{D3} , C_{D4} , C_{D5} , C_{D7} , and C_7 are supply decoupling capacitors, whose values depend on PCB artwork and stack-up information.

The components' values listed in Table 3 are selected for 2-layer reference PCB design.

*** GND is bottom pad (down-bonding pad) in the above schematic Figure 3. MG2471 Typical Application Circuit

In applications, some GPIO pins (among P0, P1 and P3) and ADC input pins may be unused. Then, the unused GPIO pins are recommended to be floating and configured as the input pull-up state: the input pull-up is the default state of the GPIOs. For the detail register configuration on the GPIOs, please refer to the <u>Sec 8.2</u>. Similarly, the unused ADC input pins are recommended to be connected to the ground.

No	No Component Description		Value
1	L1	RF matching inductor	2.4nH
2	L2, L3	RF balun inductors	4.7nH
3	C2, C3	RF balun capacitors	0.75pF
4	L4	RF LC filter/matching inductor	5.1nH
5	C5	RF LC filter/matching capacitor	0.5pF
6	C4	RF matching/DC blocking capacitor	1.0pF
7	Rbias	Resistor for internal bias current reference	510kohm
8	X-tal	32MHz crystal unit	32MHz
9	C11, C12	Crystal loading capacitors	13pF ⁸
10	C _{D0}	Decoupling capacitor for DVDD3V	10uF
11	C _{D1}	Decoupling capacitor for ADCOUPL1	1uF
12	C _{D7}	Decoupling capacitor for ADCOUPL1	1uF
13	C _{D3}	Decoupling capacitor for ADCOUPL3	1uF
14	C _{D4}	Decoupling capacitor for DVDD1	1uF
15	C _{D5}	Decoupling capacitor for DVDD2 and DXOSC18V	100pF
16	R₃	Pull-down resistor for MS[2] input	10kohm
18	C ₁₃	Capacitor for MS[2] input	1uF
19	C ₂₁	(option) Capacitor for 32.768kHz crystal oscillator	33pF
20	C ₂₂	(option) Capacitor for 32.768kHz crystal oscillator	15pF
21	R ₄	(option) Resistor for 32.768kHz crystal oscillator	22Mohm
22	R₅	(option) Resistor for 32.768kHz crystal oscillator	330kohm

Table 3. Bill of Materials for Figure 3

 $^{^{\}rm 8}\,$ The value of crystal loading capacitance depends on crystal oscillator.

7. MCU SUBSYSTEM

7.1. Memory Organization

7.1.1. Program Memory

The address space of program memory is 64KB (0x000~0xFFFF). Basically, the lower 63KB of program memory is implemented by non-volatile memory. The upper 1KB from 0xFC00 to 0xFFFF is implemented by both non-volatile memory and ROM. As shown in [Figure 4] below, there are two types of memory in the same address space. The address space, which is implemented by non-volatile memory, is used as general program memory and the address space, which is implemented by ROM, is used for ISP (In-System Programming).

As shown in (a) of [Figure 4] below, when Power is turned on, the upper 1KB of program memory is mapped to ROM under the ISP mode. As shown in (b) of [Figure 4], this program area (1KB) is used as non-volatile program memory under the normal mode. The ROM area can't be accessed under the normal mode.

Figure 4. Address Map of Program Memory

7.1.2. Data Memory

MG2471 reserves 64 KB data memory address space. This address space can be accessed by MOVX instruction. [Figure 5] shows the address map of MG2471 data memory.

Figure 5. Address Map of Data Memory

The data memory used in the application programs resides in the address range 0x0000-0x17FF. The registers and memory used in the MAC block reside in the address range 0x2000-0x21FF and 0x2300-0x24FF respectively. The registers to control or report the status of PHY block reside in the address range 0x2200-0x22FF.

Registers related to the numerous peripheral functions of the embedded microprocessor reside in the address range of 0x2500-0x29FF.

7.1.3. General Purpose Registers

[Figure 6] describes the address map of the General Purpose Registers (GPRs). GPRs can be addressed either directly or indirectly. As shown in the lower address space of [Figure 6], a bank consists of 8 registers.

The address space above the bank area is the bit addressable area, which is used as a flag by software or by a bit operation. The address space above the bit addressable area includes registers used as a general purpose of a byte unit. For more detailed information, refer to the paragraphs following [Figure 6] below.

Figure 6. GPRs Address Map

Register Bank 0-3: It is located from 0x00 to 0x1F (32 bytes). One bank consists of each 8 registers out of 32 registers. Therefore, there are total 4 banks. Each bank should be selected by software as referring the RS field in PSW register. The bank (8 registers) selected by RS value can be accessed by a name (R0-R7) by software. After reset, the default value is set to bank0.

Bit Addressable Area: The address is assigned to each bit of 16 bytes (0x20~0x2F) and registers, which is the multiple of 8, in SFR. Each bit can be accessed by the address which is assigned to these bits. 128 bits (16 bytes, 0x20~0x2F) can be accessed by direct addressing for each bit (0x00~0x7F) address is assigned) and by a byte unit as using the address from 0x20~0x2F.

Data RAM Area: A user can use the data memory area (0x30~0x7F) as a general purpose.

7.1.4. Special Function Registers(SFR)

The special function registers (SFRs) reside in their associated peripherals or in the 8051 core.

The SFR include the status or control register of the I/O ports, the timer registers, the stack pointers and so on. [Table 4] shows the address to all SFRs in MG2471. Unoccupied locations in the SFR space (the blank locations in Table 4) are unimplemented, i.e., no register exists.

If an instruction attempts to write to an unimplemented SFR location, the instruction executes, but nothing is actually written. If an unimplemented SFR location is read, it returns a zero value.

All SFRs are accessed by a byte unit. However, when SFR address is multiple of 8, it can be accessed by a bit unit.

SFR Address	8 bytes				• /		•		SFR Address
80	P0	SP	DPL	DPH				PCON	87
88	TCON	TMOD	TL0	TL1	TH0	TH1	CLKCO N1	CLKCO N2	8F
90	P1	EXIF1	PERI_CLK_ STP3						97
98	PERI_CLK_ STP0	PERI_CLK_ STP1	PERI_CLK_ STP2		P1SRC_ SEL				9F
A0			AUXR1						A7
A8	IE	T23CON	TH2	TH3	TL2	TL3			AF
B0	P3	P0OEN	P10EN		P3OEN				B7
B8	IP	P0_IE	P1_IE		P3_IE				BF
C0	WCON	P0_DS	P1_DS		P3_DS				C7
C8									CF
D0	PSW		WDTCON						D7
D8	EXIF2								DF
E0	ACC								E7
E8	EIE1	EIE2	P0_POL	P0_EDG E	P0_IRQ_ EN	P0_IRQ _STS			EF
F0	В	GPIO_IRQ_ PEND	P1_POL	P1_EDG E	P1_IRQ_ EN	P1_IRQ _STS			F7
F8	EIP2	EIP2	P3_POL	P3_EDG E	P3_IRQ_ EN	P3_IRQ _STS			FF

The following section describes each SFR relating to microprocessor.

Symbol	ws register bit symbol conventions. Access Mode	
RW	Read/Write	
RO	Read Only	
WO	Write Only	

WCON (WRITE CONTROL REGISTER, 0xC0)

This register can control the upper 1KB of program memory.

Bit	Name	Descriptions	R/W	Reset Value
7:5		Reserved	RO	0
4	ISPMODE	ISP Mode Indication. When MS[2:0], an external pin, is '100', this field is set to 1 by hardware. It notifies the MCU whether ISPMODE or not.	RO	-
3		Reserved	RO	0
2		Reserved	RO	0
1	ENROM	When this field is '1', the upper 1KB (0xFC00~0xFFFF) is mapped to ROM. When this field is '0', the upper 1KB (0xFC00~0xFFFF) is mapped to non-volatile memory. The bit setting is effective under the ISP mode.	R/W	1

0	Reserved	0

ACCUMULATOR (A or ACC, 0xE0)

This register is marked as A or ACC and it is related to all the operations.

Bit	Name	Descriptions	R/W	Reset Value
7:0	А	Accumulator	R/W	0x00

B REGISTER (B, 0xF0)

This register is used for a special purpose when multiplication and division are processed. For other instructions, it can be used as a general-purpose register. After multiplication is processed, this register contains the MSB data and 'A register' contains LSB data for the multiplication result. In division operation, this register stores the value before division (dividend) and the remainder after division. At this time, before division, the divisor should be stored in 'A register' and result value (quotient) is stored in it after division.

Bit	Name	Descriptions	R/W	Reset Value
7:0	В	B register. Used in MUL/DIV instructions.	R/W	0x00

PROGRAM STATUS WORD (PSW, 0xD0)

This register stores the status of the program. The explanation of each bit is as follows.

Bit	Name	Descriptions	RW	Reset
Field				Value
7	CY	Carry flag	R/W	0
6	AC	Auxiliary carry flag	R/W	0
5	F0	Flag0. User-defined	R/W	0
4:3	RS	Register bank select.	R/W	0
		0: Bank0		
		1: Bank1		
		2: Bank2		
		3: Bank3		
2	OV	Overflow flag	R/W	0
1	F1	Flag1. User-defined	R/W	0
0	Р	Parity flag.	R/W	0
		Set to 1 when the value in accumulator has odd		
		number of '1' bits.		

STACK POINTER (SP, 0x81)

When PUSH and CALL instructions are executed, some data (like the parameters by function call) are stored in stack to inform the values. In embedded MCU, the data memory area which can be used for a general purpose (0x08~0x7F) is used as a stack area.

This register value is increased before the data is stored and decreased after the data is read when the POP and RET instructions are executed. The default value is 0x07.

Bit Field	Name	Descriptions	RW	Reset Value
7:0	SP	Stack Pointer	R/W	0x07

DATA POINTER (DPH : 0x83, DPL : 0x82)

Data pointer consists of a high byte (DPH) and a low byte (DPL) to support 16-bit address. It can be accessed by 16-bit register or by two 8-bit registers respectively.

Bit Field	Name	Descriptions	RW	Reset Value
7:0	DPH	Data pointer, high byte	R/W	0x00
Dit	Nomo	Descriptions		Pooot

Bit	Name	Descriptions	RW	Reset
Field				Value
7:0	DPL	Data pointer, low byte	R/W	0x00

AUXILIARY CONTROL REGISTER (AUXR1, 0xA2)

This register is used to implement the Dual DPTR functions. Physically, The DPTR consists of DPTR0 and DPTR1. However, DPTR0 and DPTR1 can be accessed depending on the DPS value of AUXR1 respectively. In other words, they cannot be accessed at the same time.

Bit Field	Name	Descriptions	RW	Reset Value
7:1		Reserved	RO	0x00
0	DPS	Dual DPTR Select: Used to select either DPTR0 or DPTR1. When DPS is '0', DPTR0 is selected. When DPS is '1', DPTR1 is selected.	R/W	0

GPIO SFRs

Please refer to Sec 8.2. GPIO for more details.

Register	Address	Description
P0	0x80	PORT-0 data register
P1	0x90	PORT-1 data register
P1SRC_SEL	0x9C	PORT-1 source control register
P3	0xB0	PORT-3 data register
POOEN	0xB1	PORT-0 direction register
P10EN	0xB2	PORT-1 direction register
P3OEN	0xB4	PORT-3 direction register
P0_IE	0xB9	PORT-0 input enable register
P1_IE	0xBA	PORT-1 input enable register
P3_IE	0xBC	PORT-3 input enable register
P0_DS	0xC1	PORT-0 drive strength selection register
P1_DS	0xC2	PORT-1drive strength selection register
P3_DS	0xC4	PORT-3 drive strength selection register
P0_POL	0xEA	P0[7:0] interrupt polarity selection register
P0_EDGE	0xEB	P0[7:0] interrupt edge selection register
P0_IRQ_EN	0xEC	P0[7:0] interrupt enable register
P0_IRQ_STS	0xED	P0[7:0] interrupt flags register
P1_POL	0xF2	P1[7:0] interrupt polarity selection register
P1_EDGE	0xF3	P1[7:0] interrupt edge selection register
P1_IRQ_EN	0xF4	P1[7:0] interrupt enable register
P1_IRQ_STS	0xF5	P1[7:0] interrupt flags register
P3_POL	0xFA	P3[7:0] interrupt polarity selection register
P3_EDGE	0xFB	P3[7:0] interrupt edge selection register
P3_IRQ_EN	0xFC	P3[7:0] interrupt enable register
P3_IRQ_STS	0xFD	P3[7:0] interrupt flags register

WDT (WATCHDOG TIMER) SFR

Please refer to Sec 8.6. WDT for the more details.

Register	Address	Description
WDTCON	0xD2	Watchdog timer control register

Timer 0/1 SFRs

Please refer to Sec 8.3. timer 0/1 for the more details.

Register	Address	Description
TCON	0x88	Timer/Counter 0 & 1 control
TMOD	0x89	Timer/Counter 0 & 1 mode control
TL0	0x8A	Timer/Counter 0 low byte
TH0	0x8C	Timer/Counter 0 high byte
TL1	0x8B	Timer/Counter 1 low byte
TH1	0x8D	Timer/Counter 1 high byte

Timer 2/3 SFRs

Please refer to Sec 8.4 timer 2/3 for the more details.

Register	Address	Description
T23CON	0xA9	Timer 2 & 3 control
TL2	0xAC	Timer2 low byte
TH2	0xAA	Timer2 high byte
TL3	0xAD	Timer3 low byte
TH3	0xAB	Timer3 high byte

8051 MCU Clock Control SFRs

Please refer to Sec 7.2. clock for the more details.

Register	Address	Description
CLKCON1	0x8E	MCU subsystem reference clock control 1
CLKCON2	0x8F	MCU subsystem reference clock control 2
PERI_CLK_STP0	0x98	MCU peripherals clock on/off control 0
PERI_CLK_STP1	0x99	MCU peripherals clock on/off control 1
PERI_CLK_STP2	0x9A	MCU peripherals clock on/off control 2
PERI_CLK_STP3	0x92	MCU peripherals clock on/off control 3

Power Control SFR

Please refer to Sec 8.15. power management for the more details.

Register	Address	Description
PCON	0x87	Power control register

Bit Field	Name	Descriptions	RW	Reset Value
7:2		Reserved bits	RO	0
1	PD	Power-down mode bit 1: start power-down mode 0: clear by hardware when an enabled external interrupt or a reset occurs.	R/W	0
0		Reserved bit	RO	0

8051 MCU Interrupt SFRs

Please refer to Sec 7.4. interrupts for the more details.

Register	Address	Description
IE	0xA8	Interrupt Enable
EIE1	0xE8	Extended Interrupt Enable 1

EIE2	0xE9	Extended Interrupt Enable 2
IP	0xB8	Interrupt Priority
EIP1	0xF8	Extended Interrupt Priority 1
EIP2	0xF9	Extended Interrupt Priority 2
EXIF2	0xD8	Extended Interrupt Flag 2
EXIF1	0x91	Extended Interrupt Flag 1

7.2. Clock

The MG2471 supports an advanced and flexible clock selection function to reduce the power consumption depending on the target applications. The clock system overview of MG2471 is shown in the [Figure 7].

Figure 7. Clock System Overview

Two high speed oscillators are included in the MG2471. One is 32 MHz crystal oscillator and the other is 16MHz RC oscillator (HSRCOSC). The high speed 32MHz crystal oscillator startup time may be too long for the power critical applications. For example, the wake-up time from the power down mode is longer than the RC oscillator. So, the MG2471 can run on the 16MHz RC oscillator until the 32MHz crystal oscillator is stable.

7.2.1. 8051 MCU Reference Clock Control

The 8 MHz clock source from 32MHz crystal and a high-speed RC oscillator can be used to drive the internal 8051 MCU clock in MG2471. The default clock frequency of MG2471 is 8 MHz. When selecting 8051 MCU clock, the SFR CLKCON1 should be set as follows;

Bit Field	Name	Descriptions	RW	Reset Value
7 6 5	CLK8M_DIV[2] CLK8M_DIV[1] CLK8M_DIV[0]	Value CLK8M divider ratio 000 CLK8M is divided by 1(8MHz) 001 CLK8M/2(4MHz) 010 CLK8M/4(2MHz) 011 CLK8M/8(1MHz) 100 CLK8M/32(0.25 MHz) 101 CLK8M/512(15.625 KHz) 110 CLK8M/4096(1.953 KHz) 111 CLK8M/16384(488 Hz)	R/W	000
4	HSRCOSC_SE L	HS RCOSC selection 1: the clock selected is the HS RCOSC source 0: the clock selection depends on CLK16M SEL bit.	R/W	0
3	CLK16M_SEL	16MHz clock selection bit1: 16MHz from 32MHz crystal is selected,0: 8MHz from 32MHz crystal is selected	R/W	0
2	CLK16M_DIV[2]	Value CLK16M divider ratio	R/W	000
1	CLK16M_DIV[1]	000 CLK16M is divided by 1(16 MHz)		
0	CLK16M_DIV[0]	001 CLK16M/2(8 MHz) 010 CLK16M/4(4 MHz) 011 CLK16M/8(2 MHz) 100 CLK16M/32(0.5 MHz) 101 CLK16M/512(31.25 KHz) 110 CLK16M/4096(3.906 KHz) 111 CLK16M/16384(976 Hz)		

MCU subsystem Reference Clock Control 1 (CLKCON1, 0x8E)

MCU subsystem Reference Clock Control 2(CLKCON2, 0x8F)

Bit Field	Name	Descriptions	RW	Reset Value
7	MCU_INIT_WAI T	This bit is the status flag for detecting the MCU internal clock state change.	RO	0
6	HSRCOSC_ST S	When the MG2471 is gone into the power- down mode, this bit is set to 1. The HS RCOSC source is used as the wake-up clock when exiting from the power-down mode. In order to return to the normal mode, this bit should be cleared by SFR write operation to CLKCON2.	R/W	0
5:0	Reserved	This value read from this bits is 0	RO	0

The 8051 MCU clock should be changed to normal clock sources after wake-up from a

power-down mode by SFR CLKCON2 register writing. Please take care of this register setting.

7.2.2. MCU Peripherals Clock Control

The operating clock of 8051 MCU peripherals can be enabled or disabled by some SFR registers write operation. For details, please refer to the SFRs description below.

Bit Field	Name	Descriptions	R/W	Reset Value
7	SPI_ON	This bit is for enabling or disabling the operating clock of SPI. 0 : clock is off 1 : clock is on	R/W	0
6	UART1_ON	This bit is for enabling or disabling the operating clock of UART1. 0 : clock is off 1 : clock is on	R/W	1
5	UART0_ON	This bit is for enabling or disabling the operating clock of UART0. 0 : clock is off 1 : clock is on	R/W	1
4	GPIO_ON	This bit is for enabling or disabling the operating clock of GPIO. 0 : clock is off 1 : clock is on	R/W	1
3	TIMER3_ON	This bit is for enabling or disabling the operating clock of TIMER 3 0 : clock is off 1 : clock is on	R/W	0
2	TIMER2_ON	This bit is for enabling or disabling the operating clock of TIMER 2. 0 : clock is off 1 : clock is on	R/W	0
1	TIMER1_ON	This bit is for enabling or disabling the operating clock of TIMER 1. 0 : clock is off 1 : clock is on	R/W	0
0	TIMER0_ON	This bit is for enabling or disabling the operating clock of TIMER 0. 0 : clock is off 1 : clock is on	R/W	0

Peripheral Clock Stop 0(PERI_CLK_STP0, 0x98)

Peripheral Clock Stop 1(PERI_CLK_STP1, 0x99)

Bit Field	Name	Descriptions	R/W	Reset Value
7	I2C_ON	This bit is for enabling or disabling the operating clock of I2C controller. 0 : clock is off 1 : clock is on	R/W	0
6	IRTX_ON	This bit is for enabling or disabling the operating clock of IR TX modulator. 0 : clock is off	R/W	0

		1 : clock is on		
5	FLASHC_ON	This bit is for enabling or disabling the operating clock of flash controller. 0 : clock is off 1 : clock is on	R/W	0
4	I2SFIFO_ON	This bit is for enabling or disabling the operating clock of I2S FIFO block. 0 : clock is off 1 : clock is on	R/W	0
3	I2SRX_ON	This bit is for enabling or disabling the operating clock of I2S RX. 0 : clock is off 1 : clock is on	R/W	0
2	I2STX_ON	This bit is for enabling or disabling the operating clock of I2S TX. 0 : clock is off 1 : clock is on	R/W	0
1	QUAD_ON	This bit is for enabling or disabling the operating clock of quadrature signal decoder. 0 : clock is off 1 : clock is on	R/W	0
0	RNG_ON	This bit is for enabling or disabling the operating clock of random number generator. 0 : clock is off 1 : clock is on	R/W	0

Peripheral Clock Stop 2(PERI_CLK_STP2, 0x9A)

Bit Field	Name	Descriptions	R/W	Reset Value
7	PWM_CH4_ON	This bit is for enabling or disabling the operating clock of PWM channel 4. 0 : clock is off 1 : clock is on	R/W	0
6	PWM_CH3_ON	This bit is for enabling or disabling the operating clock of PWM channel 3. 0 : clock is off 1 : clock is on	R/W	0
5	PWM_CH2_ON	This bit is for enabling or disabling the operating clock of PWM channel 2. 0 : clock is off 1 : clock is on	R/W	0
4	PWM_CH1_ON	This bit is for enabling or disabling the operating clock of PWM channel 1. 0 : clock is off 1 : clock is on	R/W	0
3	PWM_CH0_ON	This bit is for enabling or disabling the operating clock of PWM channel 0. 0 : clock is off 1 : clock is on	R/W	0
2	MPTOP_ON	This bit is for enabling or disabling the operating clock of MAC/PHY registers interface block.	R/W	1

		0 : clock is off 1 : clock is on		
1	LOGIC3V_ON	This bit is for enabling or disabling the operating clock of LOGIC3V registers interface block. 0 : clock is off 1 : clock is on	R/W	1
0	CLKRST_CTL_O N	This bit is for enabling or disabling the operating clock of clock & reset controller. 0 : clock is off 1 : clock is on	R/W	1

Peripheral Clock Stop 3(PERI_CLK_STP3, 0x92)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved	RO	0
3	P3_INTCTL_ON	This bit is for enabling or disabling the operating clock of the interrupt controller for the external P3[1:0]/P3[7:4] pins. 0 : clock is off 1 : clock is on	R/W	0
2	P1_INTCTL_ON	This bit is for enabling or disabling the operating clock of the interrupt controller for the external P1[1:0]/P1[4:3]/P1[7:6] pins . 0 : clock is off 1 : clock is on	R/W	0
1	P0_INTCTL_ON	This bit is for enabling or disabling the operating clock of the interrupt controller for the external P0[7:0] pins . 0 : clock is off 1 : clock is on	R/W	0
0	WDT_ON	This bit is for enabling or disabling the operating clock of Watchdog timer block. 0 : clock is off 1 : clock is on	R/W	1

7.2.3. MAC/PHY Clocks Control

Please refer to the <u>clock & reset in Sec 8.1</u> of peripherals chapter for details.

7.3. Resets

The MG2471 has four types of reset sources.

- The external pin RESETB is inputted to low during more than 62.5 us
- Internal POR(Power-On-Reset) condition
- Internal BOD(Brown Out Detector) reset condition
- Watchdog timer reset condition

The initial conditions after a reset are as follows;

- I/O pins are configured as inputs with pull-up
- CPU program counter is loaded with 0x0000 and program execution starts at this address
- All peripheral registers are initialized to their reset values.
- Watchdog timer is enabled

The resets of MAC/PHY blocks are controlled by the separate reset controller block in the MG2471. They can be reset by S/W control besides four sources for system reset. For more detailed information, please refer to the register description in the <u>clock & reset</u> <u>controller(Sec 8.1)</u>.

7.4. Interrupts

The 8051 MCU of MG2471 employs a program interrupt method similar to the one of other MCU. When the interrupt event occurs, the 8051 CPU core jumps to the location which is called as an interrupt vector address and the interrupt service routine at the corresponding vector address is executed. When the interrupt subroutine completes, execution resumes at the point where the interrupt occurred. Interrupts can occur as a result of internal activity (e.g. timer0 overflow) or at the initiation of an external device (external interrupt pin). All the interrupts of MG2471 can be enabled or disabled dynamically by a user.

MG2471 has 18 interrupt sources. [Table 5] describes the detailed information for each of the interrupt sources. The 'Interrupt Address' indicates the address where the interrupt service routine is located. The 'Interrupt Flag' is the bit that notifies the MCU that the corresponding interrupt has occurred. 'Interrupt Enable' is the bit which decides whether each interrupt has been enabled. 'Interrupt Priority' is the bit which decides the priority of the interrupt. 'Interrupt Number' is the interrupt priority fixed by the hardware. That is, when two or more interrupts having the same 'Interrupt Priority' value, occur simultaneously, the lower 'Interrupt Number' is processed first.

Table 5. Interrupt Descriptions					
Interrupt Number	Interrupt Type	Interrupt Address	Interrupt Flag	Interrupt Enable	Interrupt Priority
0	External Interrupt0	0x0003	TCON.IE0 (TCON[1])	IE.EX0 (IE[0])	IP[0]
1	Timer0 Interrupt	0x000B	TCON.TF0 (TCON[5])	IE.ET0 (IE[1])	IP[1]
2	External Interrupt1	0x0013	TCON.IE1 (TCON[3])	IE.EX1 (IE[2])	IP[2]
3	Timer1 Interrupt	0x001B	TCON.TF1 (TCON[7])	IE.ET1 (IE[3])	IP[3]
4	UART0 Interrupt	0x0023	Refer to Note1	IE.ES0 (IE[4])	IP[4]
5	IR TX Interrupt	0x002B	Refer to Note2	EIE2[0]	EIP2[0]
6	I2C Interrupt	0x0033	Refer to Note3	EIE2[1]	EIP2[1]
7	UART1 Interrupt	0x003B	Refer to Note1	IE.ES1 (IE[6])	IP[6]
8	PHY Interrupt	0x0043	Refer to Note4	EIE1.PHYIE (EIE1[0])	EIP1[0]
9	Timer2 Interrupt	0x004B	EXIF1.T2IF (EXIF1[5])	EIE1.T2IE (EIE1[1])	EIP1[1]
10	AES Done Interrupt	0x0053	EXIF1.AESIF (EXIF1[6])	EIE1.AESIE (EIE1[2])	EIP1[2]
11	Timer3 Interrupt	0x005B	EXIF1.T3IF (EXIF1[7])	EIE1.T3IE (EIE1[3])	EIP1[3]
12	Sleep-Timer time- out Interrupt	0x0063	EXIF2.STIF (EXIF2[1])	EIE1.STIE (EIE1[4])	EIP1[4]
13	SPI Interrupt	0x006B	Refer to Note5	EIE1.SPIIE (EIE1[5])	EIP1[5]
14	DMA Interrupt	0x0073	Refer to Note6	EIE1.DMAIE (EIE1[6])	EIP1[6]
15	Wake-up Interrupt	0x007B	EXIF2.WUIF (EXIF2[0])	EIE1.WUIE (EIE1[7])	EIP1[7]
16	GPIO Interrupt	0x0083	Refer to Note7	EIE2[2]	EIP2[2]
17	PWM Interrupt	0x008B	Refer to Note8	EIE2[3]	EIP2[3]
					-

Table 5. Interrupt Descriptions

Note 1: In case of a UART Interrupt, bit[0] of the IIR register(0x2502,0x2512) in the UART block is used as a flag. Also, the Tx, Rx, Timeout, Line Status and Modern Status interrupts can be distinguished by bit[3:1] value. For more detailed information, refer to the UART0/1 description in <u>Sec 8.7</u>.

Note 2: In case of an IR TX interrupt, please refer to the IR Modulator section (8.10)

Note 3: In case of an I2C interrupt, please refer to the <u>I2C section (8.9)</u>

Note 4: In case of an PHY interrupt, please refer to the section (9.2.1) of PHY chapter.

Note 5: In case of an SPI interrupt, there is another interrupt enable bit in the SPI register besides EIE.SPIIE. In order to enable SPI interrupt, both SPIE in SPCR (0x2540) register and EIE.SPIIE should be set to '1'. And, SPIF in SPSR (0x2541) register acts as an interrupt flag.

Note 6: In case of a DMA interrupt, there are interrupt enable register and interrupt flag register in I2S FIFO block. The interrupt enable register are VTFINTENA (0x2770), VRFINTENA (0x2771) and VDMINTENA (0x2772). There are 24 interrupt sources. When both an interrupt enable signal and an interrupt flag signal are set to '1,' DMA interrupt is enabled.

Note 7: In case of a GPIO interrupt, please refer to the GPIO section (8.2).

Note 8: In case of a PWM interrupt, please refer to the PWM section (8.5).

7.4.1. Interrupt Sources

The MG2471 has the 18 hardware interrupt sources. They include two external interrupts (nINT0/P3[2] & nINT1/P3[3]), four timer interrupts(timer 0/1/2/3), two UART interrupts and ten additional interrupts. Each interrupt has an interrupt request flag and for some interrupts, hardware clears the request flag when it grants an interrupt. The followings are interrupt sources in the MG2471.

- External interrupts(IE0 and IE1 in TCON register)
- PHY interrupt
- AES done interrupt
- Sleep timer time-out interrupt
- MCU peripherals interrupt
 - ✓ Timer 0&1 (TF0 and TF1 in TCON register)
 - ✓ Timer 2&3 (T2IF and T3IF in EXIF register)
 - ✓ UART0 & UART1
 - ✓ SPI
 - ✓ DMA
 - ✓ 5-channel PWM
 - ✓ IR modulator
 - ✓ I2C
 - ✓ All GPIO pins except P3[3:2] pins under normal mode
 - ✓ Two external interrupt sources P3[3:2] pins
 - (Theses can be used as wakeup sources under the power down mode.)
- Wake-up interrupt from the power-down mode

EXTENDED INTERRUPT FLAG REGISTER 1 (EXIF1, 0x91)

This register stores the interrupt state corresponding to each bit. When the interrupt corresponding to a bit is triggered, the flag is set to '1'.

Bit Field	Name	Descriptions	R/W	Reset Value
7	T3IF	Timer3 Interrupt Flag. 0: No interrupt 1: Interrupt pending *Note: To clear the interrupt flag, The 1 must be written into this bit.	R/W	0
6	AESIF	AES Interrupt Flag. 0: No interrupt 1: Interrupt pending *Note: To clear the interrupt flag, The 1 must be written into this bit	R/W	0
5	T2IF	Timer2 Interrupt Flag. 0: No interrupt 1: Interrupt pending *Note: To clear the interrupt flag, The 1 must be written into this bit.	R/W	0
4:0		Reserved bits	RO	0

EXTENDED INTERRUPT FLAG REGISTER 2 (EXIF2, 0xD8)

Bit Field	Name	Descriptions	R/W	Reset Value
7:2		Reserved	RO	0
1	STIF	Sleep timer time-out interrupt flag under normal mode. 0: No interrupt 1: Interrupt pending *Note: To clear the interrupt flag, 1 must be written into this bit.	R/W	0
0	WUIF	Power-down wake-up interrupt flag 0: No interrupt 1: Interrupt pending *Note: To clear the interrupt flag, 1 must be written into this bit.	R/W	0

7.4.2. Interrupt Enable

The EA bit in the IE register is the global interrupt enable signal for all interrupts. In addition, each interrupt is masked by each interrupt enable bit. Therefore, in order to use an interrupt, both EA and the specific interrupt enable bit should be set to '1'. When the bit for each interrupt is '0', that interrupt is disabled. When the bit for each interrupt is '1', that interrupt is

enabled.

Interrupt Enable Register (IE, 0xA8)

Bit Field	Name	Descriptions	R/W	Reset Value
7	EA	Global interrupt enable 0: No interrupt will be acknowledged.	R/W	0
		1: Each interrupt source is individually enabled or disabled by setting its corresponding enable bit.		
6	ES1	UART1 interrupt enable	R/W	0
		0: interrupt disabled		
		1: interrupt enabled		
		(EA bit should be set to '1')		
5		Reserved	RO	0
4	ES0	UART0 interrupt enable	R/W	0
		0: interrupt disabled		
		1: interrupt enabled		
		(EA bit should be set to '1')		
3	ET1	Timer1 interrupt enable	R/W	0
		0: interrupt disabled		
		1: interrupt enabled		
		(EA bit should be set to '1')		
2	EX1	External interrupt1 enable	R/W	0
		0: interrupt disabled		
		1: interrupt enabled		
		(EA bit should be set to '1')		
1	ET0	Timer0 interrupt enable	R/W	0
		0: interrupt disabled		
		1: interrupt enabled		
		(EA bit should be set to '1')		
0	EX0	External interrupt0 enable	R/W	0
		0: interrupt disabled		
		1: interrupt enabled		
		(EA bit should be set to '1')		

Extended Interrupt Enable Register 1(EIE1, 0xE8)

Bit Field	Name	Descriptions	R/W	Reset Value
7	WUIE	Wake-up from the power-down mode interrupt enable 0: interrupt disabled	R/W	0

		1: interrupt enabled		
6	DMAIE	DMA interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
5	SPIIE	SPI interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
4	STIE	Sleep Timer Time-out interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
3	T3IE	Timer3 interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
2	AESIE	AES Done interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
1	T2IE	Timer2 interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
0	PHYIE	PHY interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0

Extended Interrupt Enable Register 2(EIE2, 0xE9)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved bits	RO	0
3	EIE2[3]	PWM interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
2	EIE2[2]	GPIO interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
1	EIE2[1]	I2C interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0
0	EIE2[0]	IR TX interrupt enable 0: interrupt disabled 1: interrupt enabled	R/W	0

7.4.3. Interrupt Priority

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in SFRs IP/EIP1/EIP2. A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

INTERRUPT PRIORITY REGISTER (IP, 0xB8)

If a bit corresponding to each interrupt is '0', the corresponding interrupt has lower priority and if a bit is '1', the corresponding interrupt has higher priority.

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved	RO	0
6	PS1	UART1 interrupt priority bit 0: assign low priority 1: assign high priority	R/W	0
5		Reserved	RO	0
4	PS0	UART 0 interrupt priority bit 0: assign low priority 1: assign high priority	R/W	0
3	PT1	Timer1 interrupt priority bit 0: assign low priority 1: assign high priority	R/W	0
2	PX1	External interrupt1 interrupt priority bit 0: assign low priority 1: assign high priority	R/W	0
1	PT0	Timer0 interrupt priority bit 0: assign low priority 1: assign high priority	R/W	0
0	PX0	External interrupt0 interrupt priority bit 0: assign low priority 1: assign high priority	R/W	0

EXTENDED INTERRUPT PRIORITY REGISTER 1 (EIP1, 0xF8)

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved	RO	0
6	DMAIP	DMA interrupt priority bit 1: DMA interrupt has higher priority. 0: DMA interrupt has lower priority.	R/W	0
5	SPIIP	SPI interrupt priority bit 1: PI interrupt has higher priority. 0: PI interrupt has lower priority.	R/W	0

4	RTCIP	Sleep Timer time-out interrupt priority bit 1: Sleep Timer interrupt has higher priority. 0: Sleep Timer interrupt has lower priority.	R/W	0
3	T3IP	Timer3 interrupt priority bit 1: Timer3 interrupt has higher priority. 0: Timer3 interrupt has lower priority.	R/W	0
2	AESIP	AES interrupt priority bit 1: AES interrupt has higher priority. 0: AES interrupt has lower priority.	R/W	0
1	T2IP	Timer2 interrupt priority bit 1: Timer2 interrupt has higher priority. 0: Timer2 interrupt has lower priority.	R/W	0
0	PHYIP	PHY interrupt priority bit1: PHY interrupt has higher priority.0: PHY interrupt has lower priority.	R/W	0

EXTENDED INTERRUPT PRIORITY REGISTER 2 (EIP2, 0xF9)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved bits	RO	0
3	PWMIP	PWM interrupt priority bit 1: PWM interrupt has higher priority. 0: PWM interrupt has lower priority.	R/W	0
2	GPIOIP	GPIO interrupt priority bit 1: GPIO interrupt has higher priority. 0: GPIO interrupt has lower priority.	R/W	0
1	I2CIP	I2C interrupt priority bitR/W1: I2C interrupt has higher priority.0: I2C interrupt has lower priority.		0
0	IRTXIP	IR TX interrupt priority 1: IR TX interrupt has higher priority. 0: IR TX interrupt has lower priority.	R/W	0

8. PERIPHERALS

8.1. Clock and Reset Controller

This block supports the clock on/off and SW resets for the individual blocks in the MAC/PHY or RF/Analog. Also, it selects the ADC sampling clock of ADC decimator block and controls the clock output function for supplying the clock to external devices.

Figure 9. Clocks Structure of the MAC/PHY block

PHY_CLK_EN0 (PHY Clock Enable Register 0, 0x2780)

This register is used to enable or disable clocks of the MAC/PHY block.

Bit Field	Name	Descriptions	R/W	Reset Value
7	CLK_MPI_EN	CLK_MPI clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
6	CLK_RX_EN	CLK_RX clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
5	CLK_REG_EN	CLK_REG clock on/off control bit 0: clock disabled 1: clock enabled	R/W	1

4	CLK_TX_EN	CLK_TX clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
3	CLK_TST_EN	CLK_TST clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
2	CLK_MR_EN	CLK_MR clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
1	CLK_MT_EN	CLK_MT clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
0	CLK_AES_EN	CLK_AES clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0

PHY_CLK_EN1 (PHY Clock Enable Register 1, 0x2781)

This register is used to enable or disable clocks of the MAC/PHY or RF/Analog block.

Bit Field	Name	Descriptions	R/W	Reset Value
7:6		Reserved	RO	0
5	DCCLK_EN	DCCLK (16MHz) clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
4	CLK_32M_EN	32 MHz clock on/off control bit for just monitoring0: clock disabled1: clock enabled	R/W	0
3	CLK_ADC_EN	CLK_ADC clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
2	CLK_DECI_EN	CLK_DECI clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
1	CLK_DMCAL_EN	CLK_DMCAL clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0
0	CLK_RXADC_EN	CLK_RXADC clock on/off control bit 0: clock disabled 1: clock enabled	R/W	0

PHY_CLK_FR_EN0 (PHY Clock Force Enable Register 0, 0x2782)

This register is always used to enable the clock regardless of clock enable registers setting.

Bit Field	Name	Descriptions	R/W	Reset Value
7	CLK_MPI_FR_EN	Force the CLK_MPI clock to be enabled regardless of CLK_MPI_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
6	CLK_RX_FR_EN	Force the CLK_RX clock to be enabled regardless of CLK_RX_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
5	CLK_REG_FR_EN	Force the CLK_REG clock to be enabled regardless of CLK_REG_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
4	CLK_TX_FR_EN	Force the CLK_TX clock to be enabled regardless of CLK_TX_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
3	CLK_TST_FR_EN	Force the CLK_TST clock to be enabled regardless of CLK_TST_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
2	CLK_MR_FR_EN	Force the CLK_MR clock to be enabled regardless of CLK_MR_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
1	CLK_MT_FR_EN	Force the CLK_MT clock to be enabled regardless of CLK_MT_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
0	CLK_AES_FR_EN	Force the CLK_AES clock to be enabled regardless of CLK_AES_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0

PHY_CLK_FR_EN1 (PHY Clock Force Enable Register 1, 0x2783)

This register is always used to enable the clock regardless of clock enable registers setting.

Bit Field	Name	Descriptions	R/W	Reset Value
7:6		Reserved	RO	0
5	DCCLK_FR_EN	Force the DCCLK clock to be enabled regardless of DCCLK_EN bit setting 0: clock is not forced to be enabled	R/W	0

		1: clock is forced to be enabled		
4	OSCLK_FR_EN	Force the OSCLK clock to be enabled regardless of OSCLK_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
3	CLK_ADC_FR_EN	Force the CLK_ADC clock to be enabled regardless of CLK_ADC_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
2	CLK_DECI_FR_EN	Force the CLK_DECI clock to be enabled regardless of CLK_DECI_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
1	CLK_DMCAL_FR_EN	Force the CLK_DMCAL clock to be enabled regardless of CLK_DMCAL_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0
0	CLK_RXADC_FR_EN	Force the CLK_RXADC clock to be enabled regardless of CLK_RXADC_EN bit setting 0: clock is not forced to be enabled 1: clock is forced to be enabled	R/W	0

PHY_SW_RSTB (PHY S/W Reset Register, 0x2784)

This register is used to control the S/W resets of the MAC/PHY block. The active reset level is low.

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved	RO	1
6	RESETB_DECI	RESETB_DECI reset signal control bit 0: RESETB_DECI active 1: RESETB_DECI inactive	R/W	1
5	RESETB_MAC	RESETB_MAC reset signal control bit 0: RESETB_MAC active 1: RESETB_MAC inactive	R/W	1
4	RESETB_MPI	RESETB_MPI reset signal control bit 0: RESETB_MPI active 1: RESETB_MPI inactive	R/W	1
3	RESETB_REG	RESETB_REG reset signal control bit 0: RESETB_REG active 1: RESETB_REG inactive	R/W	1
2	RESETB_RF	RESETB_RF reset signal control bit 0: RESETB_RF active 1: RESETB_RF inactive	R/W	1
1	RESETB_TX	RESETB_TX reset signal control bit	R/W	1

		0: RESETB_TX active		
		1: RESETB_TX inactive		
0	RESETB_RX	RESETB_RX reset signal control bit 0: RESETB_RX active 1: RESETB_RX inactive	R/W	1

MPTOP_CLK_SEL (MAC/PHY Clock Selection Register, 0x2785)

This register selects the operating clock of the MAC/PHY block depending on the selected data rate mode.

Bit Field	Name	Descriptions			R/W	Reset Value
7:4		Reserved bits	3		RO	0
3	CLK_AGC_SEL		Select the operating frequency of internal I CLK_AGC clock source			
		Data Rate	Bit value			
		2Mcps	0: 8 MHz, 1: 16 MHz			
		4Mcps	0: 16 MHz, 1: 32 MHz			
2	MAC_CLK_SEL	Select the op 0 : 8MHz 1 : 16MHz	• • • • • • • •			0
1	PHY_CLK_SEL[1]				R/W	0
0	PHY_CLK_SEL[0]	Bit values	Configuration		R/W	0
		11	4Mcps clocks selection			
		others	2Mcps clocks selection			

ADC_CLK_SEL (ADC Sampling Clock Selection Register, 0x2786)

This register selects the ADC sampling clock to ADC decimator block.

Bit Field	Name	Descriptions			R/W	Reset Value
7:2		Reserved	Reserved			0
1	ADC_CLK_SEL[1]				R/W	10
0	ADC_CLK_SEL[0]	Bit values	ADC sampling clock			
		00	1 MHz			
		01	2 MHz			
		10	4 MHz			
		11	Not valid]		

EXT_CLK_CTL (External Clock Output Control Register, 0x2787)

The MG2471 supports the external clock output function to interface with the external devices. The selectable clock is as following table and is output to P1[3] when the clock output function is enabled. The default value is the clock output disabled.

Bit Field	Name	Descriptions	Descriptions			Reset Value
7	EXT_CLK_EN	0: output is	Enable the external clock output function 0: output is disabled 1: output is enabled			0
6:3		Reserved		R	0	0
2	EXT_CLK_SEL[2]			R/	Ŵ	0
1	EXT_CLK_SEL[1]	Bits	External clock frequency	R/	W	0
0	EXT_CLK_SEL[0]	values 000 001 010 011 100 101 110 111	500 KHz 1 MHz 2 MHz 4 MHz 8 MHz 16 MHz 32 MHz Clock is the off-state	R/	~~	0

8.2. Input/Output Ports(GPIO)

The MG2471 has 22 general purpose pins which have the following key features;

- General I/O pins with selectable direction for each bit
- Programmable pull-up/down control for each bit
- Driving strength control for each bit
- External input disabling function for each bit
- Interrupt generation from all GPIO pins except P3[3:2] (This function is valid under normal mode and assigned to the separate interrupt vector.)
- External interrupt capability of P3[3:2] pins (These lines can be used to wake up the MG2471 from power down modes.)
- Wakeup sources in power down modes (For more detailed description, please see to Sec 8.15. Power management)

The GPIO functions are listed in [Table 6]. [Figure 10] shows the block diagram of the GPIO. The GPIO pins after a reset are configured as inputs with pull-up.

INPUTs				OUTPUT
OEN	I	PE	PS	PAD
0	0	Х	Х	0
0	1	Х	Х	1
1	х	0	Х	Hi-Z
1	х	1	0	Pull-down
1	Х	1	1	Pull-up

Table 6. PORT-0/1/3 Operation Truth Table

DS	Current Spec.	
0	Low-drive	
1	High-drive	

Figure 10. PORT-0/1/3 PAD Block Diagram

8.2.1. Port Data Registers(SFR area)

PORT-3 DATA REGISTER (P3, 0xB0)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	P3[7:0]	This port register is used as a general purpose I/O ports. When reading the each bit of PORT-3, the current status value of the corresponding bit is returned. When writing the each bit of PORT-3, the corresponding PORT-3 bit is changed to the new value. By default, the direction of P3[7:0] is the input mode and the pull-up enable bit is the active-state. For details of pull-up/pull-down controls of P3[7:0], Please see to the Power Management section(8.15).	R/W	Unknown

PORT-1 DATA REGISTER (P1, 0x90)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	P1[7:0]	This port register is used as a general purpose I/O ports. When reading the each bit of PORT-1, the current status value of the corresponding bit is returned. When writing the each bit of PORT-1, the corresponding PORT-1 bit is changed to the new value. By default, the direction of P1[7:0] is the input mode and the pull-up enable bit is the active-state. For details of pull-up/pull-down controls of P1[7:0], Please see to the Power Management section(8.15). *Note: The P1[2] and P1[5] are reserved bits.	R/W	Unknown

PORT-0 DATA REGISTER (P0, 0x80)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	P0[7:0]	This port register is used as a general purpose I/O ports. When reading the each bit of PORT-0, the current status value of the corresponding bit is returned. When writing the each bit of PORT-0, the corresponding PORT-0 bit is changed to the new value. By default, the direction of P0[7:0] is the input mode and the pull-up enable bit is the active-state. For details of pull-up/pull-down controls of P0[7:0], Please see to the Power Management section(8.15).	R/W	Unknown

8.2.2. Port Direction Registers(SFR area)

PORT-0 OUTPUT ENABLE REGISTER (P0OEN, 0xB1)

This register is SFR for setting the PORT-0 directions.

Bit Field	Name	Descriptions	R/W	Reset		
				Value		
7:0	P0OEN[7:0]	When writing a '1' to the port direction SFR bit,	R/W	0xFF		
		sets the corresponding bit to be an input.				
		Writing a '0' causes the port bit to be an output.				

PORT-1 OUTPUT ENABLE REGISTER (P10EN, 0xB2)

This register is SFR for setting the PORT-1 directions.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	P1OEN[7:0]	When writing a '1' to the port direction SFR bit, sets the corresponding bit to be an input. Writing a '0' causes the port bit to be an output. *Note: The P10EN[2] and P10EN[5] are reserved bits.	R/W	0xFF

PORT-3 OUTPUT DATA REGISTER (P3OEN, 0xB4)

	I his registe	This register is SFR for setting the PORT-3 directions.					
	Bit Field	Name	Descriptions	R/W	Reset Value		
L					value		
	7:0	P3OEN[7:0]	When writing a '1' to the port direction SFR bit,	R/W	0xFF		
			sets the corresponding bit to be an input.				
			Writing a '0' causes the port bit to be an output.				

8.2.3. Port Input Enable Registers (SFR area)

PORT-0 INPUT ENABLE REGISTER (P0_IE, 0xB9)

This register is SFR for enabling or disabling the inputs from the external PORT-0 PADs. Please refer to [Figure 10] and [Table 6] above for PAD IN/OUT pins and operation modes.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	P0_IE[7:0]	When writing a '1' to the PORT-0 PAD input enable SFR bit, enabled the input from the corresponding PORT-0 PAD. Writing a '0' causes the input from PAD to be disabled.	R/W	0xFF

PORT-1 INPUT ENABLE REGISTER (P1_IE, 0xBA)

This register is SFR for enabling or disabling the inputs from the external PORT-1 PADs.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	P1_IE[7:0]	 When writing a '1' to the PORT-1 PAD input enable SFR bit, enabled the input from the corresponding PORT-1 PAD. Writing a '0' causes the input from PAD to be disabled. *Note: The P1_IE[2] and P1_IE[5] are reserved bits. 	R/W	0xFF

PORT-3 INPUT ENABLE REGISTER (P3_IE, 0xBC)

This register is SFR for enabling or disabling the inputs from the external PORT-3 PADs.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	P3_IE[7:0]	When writing a '1' to the PORT-3 PAD input enable SFR bit, enabled the input from the corresponding PORT-3 PAD. Writing a '0' causes the input from PAD to be disabled.	R/W	0xFF

8.2.4. Port Drive Strength Selection Registers (SFR area)

PORT-0 DRIVE STRENGTH SELECTION REGISTER (P0_DS, 0xC1)

This register is SFR for selecting the drive strength capability of PORT-0.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P0_DS[7]	Select the drive strength of P0[7]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
6	P0_DS[6]	Select the drive strength of P0[6]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
5	P0_DS[5]	Select the drive strength of P0[5]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
4	P0_DS[4]	Select the drive strength of P0[4]-pin (0 : 12 mA , 1: 16 mA)	R/W	0
3	P0_DS[3]	Select the drive strength of P0[3]-pin (0 : 12 mA , 1: 16 mA)	R/W	0
2	P0_DS[2]	Select the drive strength of P0[2]-pin (0 : 12 mA , 1: 16 mA)	R/W	0
1	P0_DS[1]	Select the drive strength of P0[1]-pin (0 : 12 mA , 1: 16 mA)	R/W	0
0	P0_DS[0]	Select the drive strength of P0[0]-pin (0 : 12 mA , 1: 16 mA)	R/W	0

PORT-1 DRIVE STRENGTH SELECTION REGISTER (P1_DS, 0xC2)

This register is SFR for selecting the drive strength capability of PORT-1.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P1_DS[7]	Select the drive strength of P1[7]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
6	P1_DS[6]	Select the drive strength of P1[6]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
5		Reserved bit	RO	0
4	P1_DS[4]	Select the drive strength of P1[4]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
3	P1_DS[3]	Select the drive strength of P1[3]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
2		Reserved bit	RO	0
1	P1_DS[1]	Select the drive strength of P0[1]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
0	P1_DS[0]	Select the drive strength of P0[0]-pin (0 : 4 mA , 1: 8 mA)	R/W	0

Bit Field	Name	Descriptions	R/W	Reset Value
7	P3_DS[7]	Select the drive strength of P3[7]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
6	P3_DS[6]	Select the drive strength of P3[6]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
5	P3_DS[5]	Select the drive strength of P3[5]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
4	P3_DS[4]	Select the drive strength of P3[4]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
3	P3_DS[3]	Select the drive strength of P3[3]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
2	P3_DS[2]	Select the drive strength of P3[2]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
1	P3_DS[1]	Select the drive strength of P3[1]-pin (0 : 4 mA , 1: 8 mA)	R/W	0
0	P3_DS[0]	Select the drive strength of P3[0]-pin (0 : 4 mA , 1: 8 mA)	R/W	0

PORT-3 DRIVE STRENGTH SELECTION REGISTER (P3_DS, 0xC4)

This register is SFR for selecting the drive strength capability of PORT-3.

8.2.5. Port Pull-up/down Control Registers

These registers are mapped to the DATA memory area and can be accessed by MOVX instruction of 8051 core. These registers value are retained in the power down mode. Please refer to the <u>GPIOPS0/GPIOPE0, GPIOPS1/GPIOPE1, GPIOPS3/GPIOPE3 registers</u> in the section 8.21 for details on the register setting.

8.2.6. Port Interrupt Control Registers (SFR area)

The interrupt generation from GPIO pins is valid only under the normal mode. In the power down mode, all GPIO pins can be only used as the wakeup sources depending on the always-on register setting. (Please refer to the <u>Sec 8.21.</u>)

The interrupt vector address is also different in case of normal mode and power down mode. (normal: 0x83, power down:0x7B)

PORT-0 INTERRUPT POLARITY SELECTION REGISTER (P0_POL, 0xEA)

This register is SFR for selecting the active interrupt polarity of PORT-0.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P0_POL[7]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
6	P0_POL[6]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
5	P0_POL[5]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
4	P0_POL[4]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
3	P0_POL[3]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
2	P0_POL[2]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
1	P0_POL[1]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
0	P0_POL[0]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0

PORT-0 INTERRUPT EDGE SELECTION REGISTER (P0_EDGE, 0xEB)

This register is SFR for selecting the interrupt mode of PORT-0.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P0_EDGE[7]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
6	P0_EDGE[6]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
5	P0_EDGE[5]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
4	P0_EDGE[4]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
3	P0_EDGE[3]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
2	P0_EDGE[2]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
1	P0_EDGE[1]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
0	P0_EDGE[0]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0

PORT-0 INTERRUPT ENABLE REGISTER (P0_IRQ_EN, 0xEC)

This register is SFR for selecting the interrupt enabled/disabled function of PORT-0.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P0_IRQ_EN[7]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
6	P0_IRQ_EN[6]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
5	P0_IRQ_EN[5]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
4	P0_IRQ_EN[4]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
3	P0_IRQ_EN[3]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
2	P0_IRQ_EN[2]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
1	P0_IRQ_EN[1]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
0	P0_IRQ_EN[0]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0

PORT-0 INTERRUPT FLAG REGISTER (P0_IRQ_STS, 0xED)

This register is SFR for reflecting the interrupt status flags of PORT-0.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P0_IRQ_STS[7]	0 : No interrupt generation for P0[7] 1 : the pending interrupt generation for P0[7] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
6	P0_IRQ_STS[6]	0 : No interrupt generation for P0[6] 1 : the pending interrupt generation for P0[6] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
5	P0_IRQ_STS[5]	0 : No interrupt generation for P0[5] 1 : the pending interrupt generation for P0[5] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0

4	P0_IRQ_STS[4]	0 : No interrupt generation for P0[4] 1 : the pending interrupt generation for P0[4] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
3	P0_IRQ_STS[3]	 0 : No interrupt generation for P0[3] 1 : the pending interrupt generation for P0[3] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
2	P0_IRQ_STS[2]	0 : No interrupt generation for P0[2] 1 : the pending interrupt generation for P0[2] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
1	P0_IRQ_STS[1]	0 : No interrupt generation for P0[1] 1 : the pending interrupt generation for P0[1] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
0	P0_IRQ_STS[0]	 0 : No interrupt generation for P0[0] 1 : the pending interrupt generation for P0[0] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0

PORT-1 INTERRUPT POLARITY SELECTION REGISTER (P1_POL, 0xF2)

This register is SFR for selecting the active interrupt polarity of PORT-1.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P1_POL[7]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
6	P1_POL[6]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
5		Reserved bit	RO	0
4	P1_POL[4]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
3	P1_POL[3]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
2		Reserved bit	RO	0
1	P1_POL[1]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
0	P1_POL[0]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0

PORT-1 INTERRUPT EDGE SELECTION REGISTER (P1_EDGE, 0xF3)

This register is SFR for selecting the interrupt mode of PORT-1.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P1_EDGE[7]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
6	P1_EDGE[6]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
5		Reserved bit	RO	0
4	P1_EDGE[4]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
3	P1_EDGE[3]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
2		Reserved bit	RO	0
1	P1_EDGE[1]	0 : level interrupt mode 1 : edge interrupt mode	R/W	0
0	P1_EDGE[0]	0 : level interrupt mode	R/W	0

1 : edge interrunt mode	<u> </u>	1
T. euge interrupt mode		

PORT-1 INTERRUPT ENABLE REGISTER (P1_IRQ_EN, 0xF4)

This register is SFR for selecting the interrupt enabled/disabled function of PORT-1.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P1_IRQ_EN[7]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
6	P1_IRQ_EN[6]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
5		Reserved bit	RO	0
4	P1_IRQ_EN[4]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
3	P1_IRQ_EN[3]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
2		Reserved bit	RO	0
1	P1_IRQ_EN[1]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0
0	P1_IRQ_EN[0]	0: interrupt generation disabled 1: interrupt generation enabled	R/W	0

PORT-1 INTERRUPT FLAG REGISTER (P1_IRQ_STS, 0xF5)

This register is SFR for reflecting the interrupt status flags of PORT-1.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P1_IRQ_STS[7]	 0 : No interrupt generation for P1[7] 1 : the pending interrupt generation for P1[7] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
6	P1_IRQ_STS[6]	 0 : No interrupt generation for P1[6] 1 : the pending interrupt generation for P1[6] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
5		Reserved bit	RO	0
4	P1_IRQ_STS[4]	0 : No interrupt generation for P1[4] 1 : the pending interrupt generation for P1[4] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
3	P1_IRQ_STS[3]	0 : No interrupt generation for P1[3] 1 : the pending interrupt generation for P1[3] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
2		Reserved bit	RO	0
1	P1_IRQ_STS[1]	0 : No interrupt generation for P1[1] 1 : the pending interrupt generation for P1[1] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0
0	P1_IRQ_STS[0]	0 : No interrupt generation for P1[0] 1 : the pending interrupt generation for P1[0] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0

PORT-3 INTERRUPT POLARITY SELECTION REGISTER (P3_POL, 0xFA)

This register is SFR for selecting the active interrupt polarity of PORT-3.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P3_POL[7]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
6	P3_POL[6]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
5	P3_POL[5]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
4	P3_POL[4]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
3		Reserved bit	RO	0
2		Reserved bit	RO	0
1	P3_POL[1]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0
0	P3_POL[0]	0 : low level/falling edge interrupt selection 1 : high level/rising edge interrupt selection	R/W	0

PORT-3 INTERRUPT EDGE SELECTION REGISTER (P3_EDGE, 0xFB)

This register is SFR for selecting the interrupt mode of PORT-3.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P3_EDGE[7]	0 : level interrupt mode	R/W	0
		1 : edge interrupt mode		
6	P3_EDGE[6]	0 : level interrupt mode	R/W	0
		1 : edge interrupt mode		
5	P3_EDGE[5]	0 : level interrupt mode	R/W	0
		1 : edge interrupt mode		
4	P3_EDGE[4]	0 : level interrupt mode	R/W	0
		1 : edge interrupt mode		
3		Reserved bit	RO	0
2		Reserved bit	RO	0
1	P3_EDGE[1]	0 : level interrupt mode	R/W	0
		1 : edge interrupt mode		
0	P3_EDGE[0]	0 : level interrupt mode	R/W	0
		1 : edge interrupt mode		

PORT-3 INTERRUPT ENABLE REGISTER (P3_IRQ_EN, 0xFC)

This register is SFR for selecting the interrupt enabled/disabled function of PORT-3.

Bit Field	Name	Descriptions	R/W	Reset
				Value
7	P3_IRQ_EN[7]	0: interrupt generation disabled	R/W	0
		1: interrupt generation enabled		
6	P3_IRQ_EN[6]	0: interrupt generation disabled	R/W	0
		1: interrupt generation enabled		
5	P3_IRQ_EN[5]	0: interrupt generation disabled	R/W	0
		1: interrupt generation enabled		
4	P3_IRQ_EN[4]	0: interrupt generation disabled	R/W	0
		1: interrupt generation enabled		
3		Reserved bit	RO	0
2		Reserved bit	RO	0
1	P3_IRQ_EN[1]	0: interrupt generation disabled	R/W	0
		1: interrupt generation enabled		
0	P3_IRQ_EN[0]	0: interrupt generation disabled	R/W	0
		1: interrupt generation enabled		

PORT-3 INTERRUPT FLAG REGISTER (P3_IRQ_STS, 0xFD)

This register is SFR for reflecting the interrupt status flags of PORT-3.

Bit Field	Name	Descriptions	R/W	Reset Value
7	P3_IRQ_STS[7]	 0 : No interrupt generation for P3[7] 1 : the pending interrupt generation for P3[7] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
6	P3_IRQ_STS[6]	 0 : No interrupt generation for P3[6] 1 : the pending interrupt generation for P3[6] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
5	P3_IRQ_STS[5]	 0 : No interrupt generation for P3[5] 1 : the pending interrupt generation for P3[5] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
4	P3_IRQ_STS[4]	 0 : No interrupt generation for P3[4] 1 : the pending interrupt generation for P3[4] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
3		Reserved bit	RO	0
2		Reserved bit	RO	0
1	P3_IRQ_STS[1]	 0 : No interrupt generation for P3[1] 1 : the pending interrupt generation for P3[1] *Note: For the interrupt clear, the 1 must be written to this bit. 	R/W	0
0	P3_IRQ_STS[0]	0 : No interrupt generation for P3[0] 1 : the pending interrupt generation for P3[0] *Note: For the interrupt clear, the 1 must be written to this bit.	R/W	0

PORTS INTERRUPT PENDING REGISTER (GPIO_IRQ_PEND, 0xF1)

This register is SFR for reflecting the pending interrupt flags of PORT-0/1/3.

Bit Field	Name	Descriptions	R/W	Reset
				Value
7:3		Reserved bits	RO	0
2	P3_IRQ_PEND	0 : No interrupt generation	RO	0
		1 : The pending interrupt flag for Port-3		
1	P1_IRQ_PEND	0 : No interrupt generation	RO	0
		1 : The pending interrupt flag for Port-1		
0	P0_IRQ_PEND	0 : No interrupt generation	RO	0
		1 : The pending interrupt flag for Port-0		

8.3. TIMER 0/1

The Embedded MCU has two 16-bit timers which are compatible with Intel 8051 MCU (Timer0, Timer1). These timers have 2 modes; one is operated as a timer and the other is operated as a counter. When it is operated as a timer, there are 4 operating modes.

Each timer is 16-bit timer and consists of two 8-bit register. Therefore, the counter can be either 8-bit or 16-bit set by the operating mode.

In counter mode, the input signal T0 (P3 [4]) and T1 (P3 [5]) are sampled once every 12 cycles of the system clock. If the sampled value is changed from '1' to '0', the internal counter is incremented. In this time, the duty cycle of T0 and T1 doesn't affect the increment. Timer0 and Timer1 are accessed by using 6 SFR's.

The following table describes timer registers and modes.

TCON (TIMER/COUNTER CONTROL REGISTER,0x88)

This register is used to control a timer function and monitor a timer status.

Bit Field	Name	Descriptions	R/W	Reset Value
7	TF1	Timer1 Overflow Flag. When this field is '1', a Timer1 interrupt occurs. After the Timer1 interrupt service routine is executed, this field value is cleared by hardware.	R/W	0
6	TR1	Timer1 Run Control. When this bit is set to '1', Timer1 is enabled.	R/W	0
5	TF0	Timer0 Interrupt Flag. 1: Interrupt is pending After Timer0 interrupt service routine is executed, this field is cleared by hardware.	R/W	0
4	TR0	Timer0 Run When this bit is set to '1', Timer0 is enabled.	R/W	0
3	IE1	External Interrupt1 Edge Flag. When this field is '1', External interrupt1 is pending. After the interrupt service routine is executed, this field is cleared by hardware.	R/W	0
2	IT1	External Interrupt1 Type Control. This field specifies the type of External interrupt1. 1=Edge type. When the falling edge of INT1 is detected, the interrupt occurs. 0=Level type. When INT1 is low level, the interrupt occurs.	R/W	0
1	IE0	External Interrupt0 Edge Flag. When this field is '1', External interrupt0 is pending. After the interrupt service routine is executed, this field is cleared by hardware.	R/W	0
0	ITO	External Interrupt0 Type Control. This field specifies the type of External interrupt0. 1=Edge type. When the falling edge of INT0 is detected, the interrupt occurs. 0=Level type. When INT0 is low level, the interrupt occurs.	R/W	0

TMOD (TIMER/COUNTER MODE CONTROL REGISTER, 0x89)

Bit Field	Name	Descriptions	R/W	Reset Value
7	GATE 1	Timer Gate Control When TR1 is set to '1' and GATE1 is '1', Timer1 is enabled only while INT1 pin is high. When GATE1 is set to '0', Timer1 is enabled whenever TR1 control is set to '1'.	R/W	0
6	CT1	Timer1 Counter Mode Select When this field is set to '1', Timer1 is enabled as counter mode.	R/W	0
5:4	M1	Timer1 mode select. 0: Mode0, 12-bit Timer 1: Mode1, 16-bit Timer 2: Mode2, 8-bit Timer with auto-load 3: Mode3, two 8-bit Timer	R/W	0
3	GATE 0	Timer0 Gate Control. When TR0 is set to '1' and GATE0 is '1', Timer0 is enabled while INT0 pin is in high. When GATE1 is set to '0' and TR1 is set to '1', Timer0 is enabled.	R/W	0
2	CT0	When this field is set to '1', Timer0 is enabled as counter mode.	R/W	0
1:0	MO	Timer0 mode select 0: Mode0, 12-bit Timer 1: Mode1, 16-bit Timer 2: Mode2, 8-bit Timer with auto-load 3: Mode3, two 8-bit Timer	R/W	0

TL0/TL1/TH0/TH1 (TIMER REGISTERS, 0x8A, 0x8B, 0x8C, 0x8D)

A pair of register, which are (TH0, TL0) and (TH1, TL1), can be used as 16-bit timer register for Timer0 and Timer1 and it can be used as 8-bit register respectively.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH1	Timer1 High Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH0	Timer0 High Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TL1	Timer1 Low Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TL0	Timer0 Low Byte Data	R/W	0x00

In mode0, 13-bit register of timer0 consists of all 8-bits of TH0 and the lower 5-bits of TL0. The upper 3-bit of TL0 are disregarded. When this 13-bit register is overflowed, set TF0 to '1'. The operation of timer1 is same as that of timer0.

Figure 11. Timer0 Mode0

In Mode1, the operation is same as it of Mode0 except all timer registers are enabled as a 16-bit counter.

Figure 12. Timer0 Mode1

In mode2, TL0 of Timer0 is enabled as an 8-bit counter and TH0 reloads TL0 automatically. TF0 is set to '1' by overflowing of TL0. TH0 value retains the previous value regardless of the reloading. The operation of Timer1 is same as that of Timer0.

Figure 13. Timer0 Mode2

In Mode3, Timer0 uses TL0 and TH0 as an 8-bit timer respectively. In other words, it uses two counters. TL0 controls as the control signals of Timer0. TH0 is always used as a timer function and it controls as TR1 of Timer1. The overflow is stored in TF1. At this time, Timer1 is disabled and it retains the previous value.

8.4. TIMER 2/3

The embedded MCU includes two 16-bit timers (Timer2 and Timer3).

T23CON (TIMER2/3 CONTROL REGISTER, 0xA9)

This register is used to control Timer2 and Time3.

Bit	Name	Descriptions	merz and Time3.		R/W	Reset
Field	INAME	Descriptions			1.7.4.4	Value
7	T3 DIV2	Timor? clock	division ratio selection		R/W	0
		Bit values	Clock ratio	-		-
6	T3_DIV1				R/W	1
5	T3_DIV0	3'b000	Divided by 1		R/W	0
		3'b001	Divided by 2			
		3'b010	Divided by 3			
		011-044	(default value)			
		3'b011	Divided by 4			
		3'b100	Divided by 8			
		3'b101	Divided by 16			
		3'b110	Divided by 32			
		3'b111	Divided by 64			
4	TR3	Timer3 Run.			R/W	0
		When this	field is set to '1', Timer3	is		
		operated.	,			
3	T2 DIV2	Timer2 clock	division ratio selection		R/W	0
2	T2 DIV1	Bit values	Clock ratio	Ī	R/W	1
1	T2 DIV0	3'b000	Divided by 1		R/W	1
	12_0100	3'b001	Divided by 2			1
		3'b010	Divided by 4			
		3'b011	Divided by 8			
			(default value)			
		3'b100	Divided by 16			
		3'b101	Divided by 32			
		3'b110	Divided by 64			
		3'b111	Divided by 8			
0	TR2	Timer2 Run.			R/W	0
-			field is set to '1', Timer2	is		
1		operated.		.0		
		operateu.				

TL2/TL3/TH2/TH3 (TIMER2/3 TIMER REGISTER, 0xAC, 0xAD, 0xAA, 0xAB)

Register (TH2, TL2) and (TH3, TL3) are 16-bit timer counter register for Timer2 and Timer3. The maximum allowed set value is 0xFFFE.

Bit Na	lame	Descriptions	R/W	Reset
Field				Value
7:0 TI	Ľ3	Timer3 Low Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TL2	Timer2 Low Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH3	Timer3 High Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH2	Timer2 High Byte Data	R/W	0x00

Timer2 acts as a general 16-bit timer. Time-out period is calculated by the following equation;

$$T_{2} = \frac{T23CON[3:1]division \times (256 \times TH2 + TL2 + 1)}{fsystem}$$

If the time-out period is set too short, excessive interrupt causing abnormal operation of the system will occur. It is recommended to set sufficient time-out period for Timer2 (over 100µs).

Timer3 acts as a general 16-bit timer. Time-out period of Timer3 is calculated by the following equation;

$$T_{3} = \frac{T23CON[7:4]division \times (256 \times TH3 + TL3 + 1)}{fsystem}$$

If the time-out period is set too short, excessive interrupt causing abnormal operation of the system will occur. It is recommended to set Timer3 to a sufficient time-out period.

8.5. PWMs

The PWM is a user-programmable PWM and can also supports timer and counter controller features. Its use is to implement functions like Pulse Width Modulation (PWM), timer and counter facilities.

The following lists the main features of PWM core.

- 5 channel support
- 16-bit counter/timer facility
- Single-run or continues run of PTC counter
- Programmable PWM mode
- HI/LO Reference and Capture registers
- PWM/Timer/Counter functionalities can cause an interrupt to the CPU

$$T = \frac{CNTR}{f_{system}}$$

When operating in PWM mode, the PWM core generates binary signal with user programmable low and high periods.

When operating in timer/counter mode, the PWM core counts number of clock cycles of system clock. After reaching low and/or high reference, the PWM core can generate an interrupt. Input signal PWM pad can be used to capture value of the CNTR register into low and high capture registers.

When operating from the system clock, PTC_GATE pin can be used to gate internal timer/counter circuitry. In both PWM and timer/counter modes, CNTR can run for a single cycle and it can automatically restart after each complete cycle. Cycle completes after reaching value in the LRC register. These two modes are called single-run and continuous-run.

PWM Mode

To operate in PWM mode, HRC and LRC should be set with the value of low and high periods of the PWM output signal. HRC is number of clock cycles after reset of the CNTR when PWM output should go high. And LRC is number of clock cycles after reset of the CNTR when PWM output should go low.

CNTR can be reset with the hardware reset, bit CTRL[CNTRRST] or periodically when CTRL[SINGLE] bit is cleared. To enable PWM output driver, CTRL[OE] should be set. To enable continues operation, CTRL[SINGLE] should be cleared and CTRL[EN] should be set. If gate function is enabled, PWM periods can be automatically adjusted with the capture input. PWM output signal is controlled with the HRC and LRC, and these two registers can be set without software control with the PTC_GATE pin signal.

Usually interrupts are enabled in timer/counter mode. This is done with the CTRL[INTE].

Gate Feature

If system clock is used to increment CNTR, PTC_GATE pin input signal can be used to gate the system clock and not increment the CNTR register. Which level of the PTC_GATE pin has gating capability depends on value of the CTRL[NEC].

Interrupt Feature

Whenever CNTR equals to the value of the HRC or LRC, an interrupt request can be asserted. This depends if CTRL[INTE] bit is set.

Capture Feature

PWM pin input signal can be used to capture value of the current CNTR into HRC or LRC registers. Into which reference/capture register value is captured, depends on edge of the PWM pin input signal. On positive edge value is captured into HRC register and on negative edge value is captured into LRC register. In order to enable capture feature, CTRL[CAPTE] must be set.

PWMx_CNTR

CNTR register is the actual counter register. It is incremented at every counter/timer clock cycle. In order to count, CNTR must first be enabled with the CTRL[EN]. CNTR can be reset with the CTRL[RST]. CNTR can operate in either single-run mode or continues mode. Mode is selected with the CTRL[SINGLE].

PWMx_CNTRH(PWM CHx COUNTER REGISTER MSB PART, 0x2580(CH0), 0x2588(CH1), 0x2590(CH2), 0x2598(CH3), 0x25A0(CH4))

B F	it ield	Name	Descriptions	R/W	Reset Value
1	5:8	CNTR	MSB Part of CNTR register	R/W	0

PWMx_CNTRL(PWM CHx COUNTER REGISTER LSB PART, 0x2581(CH0), 0x2589(CH1), 0x2591(CH2), 0x2599(CH3), 0x25A1(CH4))

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CNTR	LSB Part of CNTR register	R/W	0

PWMx_HRC

HRC register is a second out of two reference/capture registers. It has two functions;

- In reference mode it is used to assert high PWM output or to generate an interrupt.

- In capture mode it captures CNTR value on high value of PWM pin input signal.

The HRC should have lower value than LRC. This is because PWM output goes first high and later low.

PWMx_HRCH (PWM CHx HIGH REF/CAP REGISTER, MSB Part, 0x2582(CH0), 0x258A(CH1), 0x2592(CH2), 0x259A(CH3), 0x25A2(CH4))

Bit Field	Name	Descriptions	R/W	Reset Value
15:8	HRC	MSB Part of HRC register	R/W	0

PWMx_HRCL (PWM CH0 HIGH REF/CAP REGISTER, LSB Part, 0x2583(CH0), 0x258B(CH1), 0x2593(CH2), 0x259B(CH3), 0x25A3(CH4))

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	HRC	LSB Part of HRC register	R/W	0

PWMx_LRC

LRC register is a first out of two reference/capture registers. It has two functions;

□ □- In reference mode it is used to assert low PWM output or to generate an interrupt □ □- In capture mode it captures CNTR value on low value of PWM pin input signal

The LRC should have higher value than HRC. This is because PWM output goes high first and then low later.

PWMx_LRCH (PWM CHx LOW REF/CAP REGISTER, MSB Part, 0x2584(CH0), 0x258C(CH1), 0x2594(CH2), 0x259C(CH3), 0x25A4(CH4))

Bit Field	Name	Descriptions	R/W	Reset Value
15:8	LRC	MSB Part of LRC register	R/W	0

PWMx_LRCL (PWM CHx LOW REF/CAP REGISTER, LSB Part, 0x2585(CH0), 0x258D(CH1), 0x2595(CH2), 0x259D(CH3), 0x25A5(CH4))

B Fi	it ield	Name	Descriptions	R/W	Reset Value
7:	:0	LRC	LSB Part of LRC register	R/W	0

PWMx_CTRL

Control bits in CTRL register control operation of PWM core.

PWMx_CTRL	(PWM	CHx	CONTROL	REGISTER ,	0x2586(CH0),	0x258E(CH1),
0x2596(CH2), 0	x259E(C	CH3), 0	x25A6(CH4))			

Bit Field	Name	Descriptions	R/W	Reset Value
7	INTE	Interrupt Enable	R/W	0
6	CAPTE	When set, PWM pin input signal can be used to capture CNTR into LRC or HRC registers. Into which reference/capture register capture occurs depends on edge of the PWM pin input signal. When cleared, capture function is masked.	R/W	0
5	CNTRRST	When set, CNTR is under reset. When cleared, normal operation of the counter is allowed.	R/W	0
4	SINGLE	When set, CNTR is not incremented anymore after it reaches value equal to the LRC value. When cleared, CNTR is restarted after it reaches value in the LCR register.	R/W	0
3	OE	The value of this bit is reflected on the PWM pin output signal. It is used to enable PWM output driver.	R/W	0
2	NEC	When set, CNTR increments on low period of PTC_GATEx pin. When cleared, CNTR increments on high period of PTC_GATEx pin. This bit has effect only on 'gating' function of PTC_GATEx pin when GATE bit is set.	R/W	0
1	GATE	PTC_GATEx pin gate function enable When set, the PTC_GATEx pin is used to increase the internal 16-bit counter /timer(CNTR).	R/W	0
0	EN	When set, CNTR can be incremented.	R/W	0

PWM_INTR (PWM INTERRUT FLAG REGISTER, 0x257F)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:5	Reserved	-	RO	0
4	PWM4INTR	PWM CH4 Interrupt flag.	R/W	0
3	PWM3INTR	PWM CH3 Interrupt flag.	R/W	0
2	PWM2INTR	PWM CH2 Interrupt flag.	R/W	0
1	PWM1INTR	PWM CH1 Interrupt flag.	R/W	0
0	PWM0INTR	PWM CH0 Interrupt flag.	R/W	0

8.6. Watchdog Timer

Watchdog Timer (WDT) monitors whether the MCU operates normally or not. If a problem occurs, it immediately resets MCU.

In fact, when a system does not clear WDT counter value, WDT considers that a problem occurred. Therefore, it automatically resets MCU. WDT is used when a program is not completed normally because a software error is caused in any environment such as electrical noise, unstable power, and static electricity.

When Power-up, the internal counter value of WDT is set to '0' and watchdog timer is operated. If overflow is caused in the internal counter, system reset is caused. At this moment, timeout period is about 1.0 second. A user may not use WDT by setting ENB bit of WDTCON register. When WDT operates, an application program must clear CLR bit periodically to prevent a system from being reset.

The overflow interval can be set by DUR bits. The interval calculated as follows;

$$T = \frac{2^{DUR}}{fRTCCLK}$$

To protect WDTCON register write access, special write sequence is required.

 $\begin{array}{l} \text{WDTCON} \leftarrow 0 \text{x55} \text{ (write password 1)} \\ \text{WDTCON} \leftarrow 0 \text{xAA} \text{ (write password 2)} \\ \text{WDTCON} \leftarrow \text{(Control Value)} \end{array}$

If the special sequence is not applied, it immediately resets MCU.

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	ENB	Watchdog Timer Enable Bar. Active Low	R/W	0
6	CLR	Watchdog Timer Clear. Auto Clear Bit. This	WO	0
		bit clear Internal WDT Counter.		
5	SYNCBUSY	Synch Busy. This bit indicates during WDT	R/W	0
		register update.		
3:0	DUR	Watchdog Timer Duration	R/W	0xF

WDTCON (WATCHDOG TIMER CONTROL REGISTER, MCU SFR 0xD2)

8.7. UART 0/1

Serial communication is categorized as synchronous mode or asynchronous mode in terms of its data transmission method. Synchronous mode is to transmit the data based on the standard clock pulse. Asynchronous mode is to transmit the data bit by arranging the baud rate of data bit each other without standard clock. That is, when a transmitter transmits the data as arranged frequency, a receiver read the data according to the arranged method previously.

The embedded MCU has UART0 and UART1 to enable two-way communication. These devices support asynchronous mode. The following registers are used to control UART. The baudrate can be set by following expression;

 $Baudrate = \frac{fsystem}{XCR \times Divisor(16bits)}$

RBR (UARTO RECEIVE BUFFER REGISTER, 0x2500)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RBR	Read the received data	RO	0x00

THR (UART0 TRANSMITTER HOLDING REGISTER, 0x2500)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	THR	This register stores the data to be transmitted. The address is the same as RBR register. When accessing this address, received data(RBR) is read and the data to be transmitted is stored.		0x00

DLL (UART0 DIVISOR LSB REGISTER, 0x2500)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLL	This register can be accessed only when DLAB bit in the LCR register is set to '1'. This register shares a 16-bit register with the DLM register occupying the lower 8 bits. This full 16-bit register is used to divide clock.	R/W	0x00

IER (UARTO INTERRUPT ENABLE REGISTER, 0x2501)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:4		Reserved	RO	0
3	EDSSI	Enable MODEM Status Interrupt.	R/W	0
		When this field is set to '1', Modem status		
		interrupt is enabled.		
2	ELSI	Enable Receiver Line Status Interrupt.	R/W	0
1	ETBEI	Enable Transmitter Holding Register	R/W	0
		Empty Interrupt		
0	ERBEI	Enable Received Data Available Interrupt	R/W	0

DLM (UARTO DIVISOR LATCH MSB REGISTER, 0x2501)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLM	This register can be accessed only when DLAB bit in the LCR register is set to '1'. This register shares a 16-bit register with the DLL register occupying the higher 8 bits. This full 16-bit register is used to divide clock.	R/W	0x00

IIR (UART0 INTERRUPT IDENTIFICATION REGISTER, 0x2502)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:4		Reserved	RO	0
3:1	INTID	Interrupt Identification.	RO	0
		Refer to the [Table 7] below.		
0	PENDING	Shows whether the interrupt is pending	RO	1
		or not. When this field is '0', the interrupt		

	is pending.	

Note: IIR register uses the same address as FCR register below. IIR register is read only and FCR register is write-only.

INTID	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control
011	1 st	Receiver Line Status	Parity, Overrun or Framing errors or Break Interrupt	Reading the LSR (Line Status Register).
010	2 nd	Receiver Data available	FIFO trigger level reached	FIFO drops below trigger level
110	2 nd	Timeout Indication	There is at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 character times.	Reading from the FIFO (Receiver Buffer Register)
001	3 rd	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Writing to the Transmitter Holding Register or reading IIR
000	4 th	Modem Status	CTS, DSR, RI or DCD	Reading the Modem status register

Table 7. UART0 Interrupt List

FCR (UART0 FIFO CONTROL REGISTER, 0x2502)

Bit Field	Name	Descriptions	R/W	Reset Value
7:6	URXFTRIG	Adjust the trigger level of Receiver FIFO. Interrupt occurs when FIFO receives the data byte based on this field value below. For example, when URXFTRIG field is set to '3', interrupt does not occur until FIFO receives 14 byte. When FIFO receives 14 byte, interrupt occurs. 0: 1byte 1: 4 byte 2: 8 byte 3: 14 byte	WO	3
5:3		Reserved	RO	0
2	UTXFRST	When this field is set to '1', Transmitter FIFO is cleared and the circuits related to it are reset.	WO	0
1	URXFRST	When this field is set to '1', Receiver FIFO is cleared and the circuits related to it are reset.	WO	0
0		Reserved	RO	0

LCR (UART0 LINE CONTROL REGISTER, 0x2503)

Bit Field	Name	Descriptions	R/W	Reset Value
7	DLAB	Divisor Latch Access Enable.	R/W	0

r	1			11
		When this field is set to '1', Divisor register (DLM, DLL) can be accessed.		
		When this field is set to '0', general		
		register can be accessed.		
6	SB	Set Break.	R/W	0
		When this field is set to '1', serial output		
		is to be '0' by force(break state)		
5	SP	Stick Parity. When PEN and EPS is '1' while this field is set to '1', parity, which is generated as '0', is transmitted. In reception mode, it checks whether parity value is '0' or not.	R/W	0
		When PEN is '1' and EPS is '0' while this field is set to '1', parity, which is generated as '1', is transmitted. In reception mode, it checks whether parity value is '1' or not.		
4	EPS	Even Parity Enable. When this field is set to '1', parity value is determined to transfer '1' which is in even number. When this field is set to '0', parity value is determined to transfer '1' which is in odd number.	R/W	0
3	PEN	Parity Enable. When this field is set to '1', parity is calculated for the byte to be transmitted and transferred with it. In reception mode, checks parity. When this field is '0', parity is not generated.	R/W	0
2	STB	Number of Stop Bits. When this field is set to '1', 2 stop bit is used. When transmitting a word (character) of 5 bit length, 1.5 stop bit is used. When this field is '0', 1 stop bit is used.	R/W	0
1:0	WLS	Word Length Select. 0: 5bit Word 1: 6bit Word 2: 7bit Word 3: 8bit Word	R/W	3

LSR (UARTO LINE STATUS REGISTER, 0x2505)

Bit Field	Name	Descriptions	R/W	Reset Value
7	ERCVR	 Error in Receiver Indicator. 1: At least one parity error, framing error or break indications have been received. The bit is cleared upon reading from the register. 0: Otherwise. 	RO	0
6	TEMT	Transmitter Empty indicator. 1: Both the transmitter FIFO and	RO	1

r				
		transmitter shift register are empty. The		
		bit is cleared when data is being been		
		written to the transmitter FIFO.		
		'0' – Otherwise.		
5	THRE	Transmit FIFO is empty.	RO	1
		1: The transmitter FIFO is empty.		
		Generates Transmitter Holding Register		
		Empty interrupt. The bit is cleared when		
		data is being been written to the		
		transmitter FIFO.		
		0: Otherwise.		
4	BI	Break Interrupt (BI) indicator.	RO	0
		1: A break condition has been reached in		Ŭ
		the current character. The break occurs		
		when the line is held in logic 0 for a		
		time of one character (start bit + data +		
		parity + stop bit). In that case, one zero		
		character enters the FIFO and the UART		
		waits for a valid start bit to receive next		
		character. The bit is cleared upon		
		reading from the register. Generates		
		receiver Line Status interrupt.		
		1: No break condition in the current		
0		character.	D O	0
3	FE	Framing Error (FE) indicator.	RO	0
		1: The received character at the top of		
		the FIFO did not have a valid stop bit. Of		
		course, generally, it might be that all the		
		following data is corrupt. The bit is		
		cleared upon reading from the register.		
		Generates Receiver Line Status interrupt.		
		1: No framing error in the current		
		character.		
2	PE	Parity Error (PE) indicator.	RO	0
		1: The character that is currently at the		
		top of the FIFO has been received with		
		parity error. The bit is cleared upon		
		reading from the register. Generates		
		Receiver Line Status interrupt.		
		1: No parity error in the current character.		
1	OE	Overrun Error (OE) indicator.	RO	0
		1: If the FIFO is full and another		
		character has been received in the		
		receiver shift register. If another		
		character is starting to arrive, it will		
		overwrite the data in the shift register but		
		the FIFO will remain intact. The bit is		
		cleared upon reading from the register.		
		Generates Receiver Line Status interrupt.		
		0: No overrun state		
0	DR	Data Ready (DR) indicator.	RO	0
U		0: No characters in the FIFO.		5
		1: At least one character has been		
		received and is in the FIFO.		

XCR (UART0 DIVISOR LSB REGISTER, 0x2507)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	XCR	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists of 8 bit register. XCR register with DLM, DLL registers used in baudrate generation.	R/W	0x10

ECR (UART0 EXTRA FEATURE CONTROL REGISTER, 0x2505)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved.	RO	0
2:0	ECR	 Extra feature control register. 0: Default register access. 2: RX FIFO Interrupt level (RIL) register access enable. 5: TX FIFO level count (TLC) register and RX FIFO level count (RLC) register access enable. 	WO	0

TLC (UART0 TX FIFO LEVEL COUNT REGISTER, 0x2503)

Bit Field	Name	Descriptions	R/W	Reset Value
	TXLVLCNT	This register can be accessed when ECR register is set to '5'. This register indicates filled data size in the TX FIFO	RO	0x00

RIL (UART0 RX FIFO INTERRUPT LEVEL REGISTER, 0x2504)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RXINTLVL	This register can be accessed when ECR register is set to '2'. When RIL register is set to zero value, the URXFTRIG field of FCR is valid. If RIL register is set to non-zero value, the receiver FIFO interrupt occurs when received bytes is greater than or equal to RIL register value.		0x00

RLC (UART0 RX FIFO LEVEL COUNT REGISTER, 0x2504)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RXLVLCNT	This register can be accessed when ECR register is set to '5'. This register indicates filled data size in the RX FIFO.	RO	0x00

VSPMUX (I2S SOURCE PATH MUX CONTROL REGISTER, 0x277F)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved.	RO	0
2:0	VSPMUX	when VSPMUX register set to '1'. UART0 FIFO size is changed 256 entry. Otherwise, UART0 FIFO size is 16 entry.	R/W	0

	The	detailed	information	is	in	the	I2S	
	Part.							

The following registers are to control UART1.

RBR (UART1 RECEIVE BUFFER REGISTER, 0x2510)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RBR	Read the received data	RO	0x00

THR (UART1 TRANSMITTER HOLDING REGISTER, 0x2510)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	THR	This register stores the data to be transmitted. The address is same as RBR register. By accessing this address, received data(RBR) can be read and the data to be transmitted can be stored.	WO	0x00

DLL (UART1 DIVISOR LSB REGISTER, 0x2510)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLL	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists of 16-bit register with DLM register and it is a lower 8 bit of 16- bit. This 16-bit register is used to divide clock.	R/W	0x00

IER (UART1 INTERRUPT ENABLE REGISTER, 0x2511)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:4		Reserved	RO	0
3	EDSSI	Enable MODEM Status Interrupt. When this field is set to '1', Modem status	R/W	0
		interrupt is enabled.		
2	ELSI	Enable Receiver Line Status Interrupt.	R/W	0
1	ETBEI	Enable Transmitter Holding Register Empty Interrupt	R/W	0
0	ERBEI	Enable Received Data Available Interrupt	R/W	0

DLM (UART1 DIVISOR LATCH MSB REGISTER, 0x2511)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLM	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists of 16-bit register with DLL register and it is a higher 8 bit of 16- bit. This 16-bit register is used to divide clock.		0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved	RO	0
3:1	INTID	Interrupt Identification. Refer to the [Table 8] below.	RO	0
0	PENDING	Shows whether the interrupt is pending or not. When this field is '0', the interrupt is pending.	RO	1

IIR (UART1 INTERRUPT IDENTIFICATION REGISTER, 0x2512)

Note: IIR register uses the same address as FCR register below. IIR register is read only and FCR register is write-only.

		Таріс		
INTID	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control
011	1 st	Receiver Line Status	Parity, Overrun or Framing errors or Break Interrupt	Reading the LSR (Line Status Register).
010	2 nd	Receiver Data available	FIFO trigger level reached	FIFO drops below trigger level
110	2 nd	Timeout Indication	There is at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 character times.	Reading from the FIFO (Receiver Buffer Register)
001	3 rd	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Writing to the Transmitter Holding Register or reading IIR
000	4 th	Modem Status	CTS, DSR, RI or DCD	Reading the Modem status register

Table 8. UART1 Interrupt List

FCR (UART1 FIFO CONTROL REGISTER, 0x2512)

Bit Field	Name	Descriptions	R/W	Reset Value
7:6	URXFTRIG	Adjust the trigger level of Receiver FIFO. Interrupt occurs when FIFO receives the data byte based on this field's value below. For example, when URXFTRIG field is set to '3', interrupt does not occur until FIFO receives 14 bytes. When FIFO receives 14 byte, interrupt occurs. 0: 1byte 1: 4 byte 2: 8 byte 3: 14 byte	WO	3
5:3		Reserved	RO	0
2	UTXFRST	When this field is set to '1', Transmitter FIFO is cleared and the circuits related to it are reset.	WO	0
1	URXFRST	When this field is set to '1', Receiver	WO	0

	FIFO is cleared and the circuits related to it are reset.		
0	Reserved	RO	0

LCR (UART1 LINE CONTROL REGISTER, 0x2513)

Bit Field	Name	Descriptions	R/W	Reset Value
7	DLAB	Divisor Latch Access Enable. When this field is set to '1', Divisor register (DLM, DLL) can be accessed. When this field is set to '0', general register can be accessed.	R/W	0
6	SB	Set Break. When this field is set to '1', serial output is forced to be '0'(break state).	R/W	0
5	SP	Stick Parity. When PEN and EPS are '1' while this field set to '1', a parity of '0' is transmitted. In reception mode, it checks whether parity value is '0' or not. When PEN is '1' and EPS is '0' while this field is to '1', parity of '1', is transmitted. In reception mode, it checks whether parity value is '1' or not.	R/W	0
4	EPS	Even Parity Enable. When this field is set to '1', parity value is even. When set to '0', parity value is odd.	R/W	0
3	PEN	Parity Enable. When this field is set to '1', parity is calculated for the byte to be transmitted and transferred with it. In reception mode, checks parity. When this field is '0', parity is not generated.	R/W	0
2	STB	Number of Stop Bits. When this field is set to '1', 2 stop bit is used. When transmitting a word (character) of 5 bit length, 1.5 stop bit is used. When this field is '0', 1 stop bit is used.	R/W	0
1:0	WLS	Word Length Select. 0: 5bit Word 1: 6bit Word 2: 7bit Word 3: 8bit Word	R/W	3

LSR (UART1 LINE STATUS REGISTER, 0x2515)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	ERCVR	Error in Receiver Indicator.	RO	0
		1: At least one parity error, framing error		
		or break indications have been received.		

		The bit is cleared upon reading from the		
		register.		
6	TEMT	0: Otherwise.	RO	1
0		Transmitter Empty indicator.	RU	1
		1: Both the transmitter FIFO and		
		transmitter shift register are empty. The bit		
		is cleared when data is being been written		
		to the transmitter FIFO.		
_		'0': Otherwise.		4
5	THRE	Transmit FIFO is empty.	RO	1
		1: The transmitter FIFO is empty.		
		Generates Transmitter Holding Register		
		Empty interrupt. The bit is cleared when		
		data is being been written to the transmitter		
		FIFO.		
		0: Otherwise.		-
4	BI	Break Interrupt (BI) indicator.	RO	0
		1: A break condition has been reached in		
		the current character. The break occurs		
		when the line is held in logic 0 for a		
		time of one character (start bit + data +		
		parity + stop bit). In that case, one zero		
		character enters the FIFO and the UART		
		waits for a valid start bit to receive next		
		character. The bit is cleared upon reading		
		from the register. Generates receiver Line		
		Status interrupt.		
		0: No break condition in the current character.		
3	FE	Framing Error (FE) indicator.	RO	0
		1: The received character at the top of the		
		FIFO did not have a valid stop bit. Of		
		course, generally, it might be that all the		
		following data is corrupt. The bit is cleared		
		upon reading from the register. Generates		
		Receiver Line Status interrupt.		
		0: No framing error in the current		

		character.		
2	PE	Parity Error (PE) indicator.	RO	0
		1: The character that is currently at the top		
		of the FIFO has been received with parity		
		error. The bit is cleared upon reading from		
		the register. Generates Receiver Line		
		Status interrupt.		
		0: No parity error in the current character.		
1	OE	Overrun Error (OE) indicator.	RO	0
		1: If the FIFO is full and another		
		character has been received in the receiver		
		shift register. If another character is		
		starting to arrive, it will overwrite the data in		
		the shift register but the FIFO will remain		
		intact. The bit is cleared upon reading from		
		the register. Generates Receiver Line		
		Status interrupt.		
		0: No overrun state		
0	DR	Data Ready (DR) indicator.	RO	0
		0: No characters in the FIFO.		
		1: At least one character has been received and is in the FIFO.		

XCR (UART1 CLOCK DIVISOR REGISTER, 0x2517)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	XCR	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists of 8 bit register. XCR register with DLM and DLL registers used in UART baudrate generation.	R/W	0x10

ECR (UART1 EXTRA FEATURE CONTROL REGISTER, 0x2515)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved.	RO	0
2:0	ECR	 Extra feature control register. 0: Default register access. 2: RX FIFO Interrupt level (RIL) register access enable. 5: TX FIFO level count (TLC) register and RX FIFO level count (RLC) register access enable. 	WO	0

TLC (UART1 TX FIFO LEVEL COUNT REGISTER, 0x2513)

Bit Name Field	e Descriptio	ons	R/W	Reset Value
7:0 TXLV	register	ter can be accessed when ECR is set to '5'. This register filled data size in the TX FIFO		0x00

RIL (UART1 RX FIFO INTERRUPT LEVEL REGISTER, 0x2514)

Bit Field	Name	Descriptions	R/W	Reset Value
		This as sister and he assessed where FOD	D 44/	
7:0	RXINTLVL	This register can be accessed when ECR register is set to '2'. when RIL register is set to zero value, the URXFTRIG field of FCR is valid. If RIL register is set to non-zero value, the receiver FIFO interrupt occurs when received bytes is greater than or equal to RIL register value.		0x00

RLC (UART1 RX FIFO LEVEL COUNT REGISTER, 0x2514)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	RXLVLCNT	This register can be accessed when ECR register is set to '5'. This register indicates filled data size in the RX FIFO.	RO	0x00

VSPMUX (I2S SOURCE PATH MUX CONTROL REGISTER, 0x277F)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved.	RO	0
2:0	VSPMUX	when VSPMUX register set to '2'. Otherwise, UART1 FIFO size is 16 entry. The detailed information is in the I2S Part.	R/W	0

8.8. SPI MASTER/SLAVE

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). The operation is different in either Master mode or Slave mode

In the Master mode, the data transmission is done by writing to the SPDR (SPI Data Register, 0x2542).

After transmission, data reception is initiated by a byte transmitted to the Slave device from the Master SPI clock. When the SPI interrupt occurs, the value of the SPDR register becomes the received data from the SPI slave device. Even though the SPDR TX and RX have the same address, no data collision occurs because the processes of writing and reading data happen sequentially.

In the Slave mode, the data must be ready in the SPDR when the Master calls for it. Data transmission is accomplished by writing to the SPDR before the SPI clock is generated by the Master. When the Master generates the SPI clock, the data in the SPDR of the Slave is transferred to the Master. If the SPDR in the Slave is empty, no data exchange occurs. Data reception is done by reading the SPDR when the next SPI interrupt occurs.

Figure 15. SPI Data Transfer

SPCR (SPI CONTROL REGISTER, 0x2540)

Bit Field	Name	Descriptions	R/W	Reset Value
7	SPIE	SPI Interrupt Enable. When this field is set to '1', SPI interrupt is enabled.	R/W	0
6	SPE	SPI Enable. When this field is set to '1', SPI is enabled.	R/W	0
5		Reserved	RO	0
4	MSTR	Master Mode Select. When this field is set to '1', a Master mode is selected.	R/W	1
3	CPOL	Clock Polarity. If there is no data transmission while this field is set to '0', SCK pin retains '0'. If there is no data transmission while this field is set to '1', SCK pin retains '1'. This field is used to set the clock and data between a Master and Slave with CPHA field. Refer to the below for a more detailed explanation.	R/W	0
2	СРНА	Clock Phase. This field is used to set the clock and data between a Master and Slave with CPOL field.	R/W	0
1:0	SPR	SPI Clock Rate Select. With ESPR field in SPER register(0x2543), selects SPI clock(SCK) rate when the device is configured as a Master. Refer to the ESPR field below.	R/W	0

There are four methods of data transfer based on the settings of CPOL and CPHA. Polarity of SPI serial clock(SCK) is determined by CPOL value and it determines whether SCK activates high or low.

If CPOL value is '0', SCK pin retains '0' during no data transmission. If CPOL value is '1',

SCK pin retains '1' during no data transmission. CPHA field determines the format of data to be transmitted.

The table below describes the clock polarity and the data transition timing.

CPOL	CPHA	SCK when idle	Data Transition Timing
0	0	Low	Falling Edge of SCK
0	1	Low	Rising Edge of SCK
1	0	High	Rising Edge of SCK
1	1	High	Falling Edge of SCK

The following describes this block when slave mode is selected. When the values of CPOL and CPHA are the same, (a) and (b) below, output data is changed at the falling edge of SCK. Input data is captured at the rising edge of SCK. When the CPOL and CPHA values are different, (b) and (c) below, output data is changed at the rising edge of received SCK. Input data is captured at the falling edge of SCK.

SPSR (SPI STATUS REGISTER, 0x2541)

Bit Field	Name	Descriptions	R/W	Reset Value
7	SPIF	SPI Interrupt Flag. When SPI interrupt occurs, this field is set to '1'. Set whenever data transmission is finished and it can be cleared by software.	R/W	0
6	WCOL	Write Collision. This field is set to '1' when writing data to the SPDR register while SPITX FIFO is full. It can be cleared by software.	R/W	0
5:4		Reserved	RO	0
3	WFFUL	Write FIFO Full.	RO	0

		This field is set to '1' when Write FIFO is		
		full.		
		This field is read only.		
2	WFEMPTY	Write FIFO Empty.	RO	1
		This field is set to '1' when Write FIFO is		
		cleared. This field is read only.		
1	RFFUL	Read FIFO Full.	RO	0
		This field is set to '1' when Read FIFO is		
		full.		
		This field is read only.		
0	RFEMPTY	Read FIFO Empty.	RO	1
		This field is set to '1' when Read FIFO is		
		cleared. This field is read only.		

SPDR (SPI DATA REGISTER, 0x2542)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SPDR	This register is read/write buffer.	R/W	-

SPER (SPI E REGISTER, 0x2543)

Bit Field	Name	Descriptions		R/W	Reset Value
7:6	ICNT	Interrupt Count. This field indicat transmit. SPIF each byte is tran	R/W	0	
5:2		Reserved		RO	0
1:0	ESPR	With SPR fie (0x2540), this	lock Rate Select. Id in SPCR Register field selects SPI e when a device is Master.	R/W	2
		{ESPR, SPR}	(System Clock Divider)		
		0000	Reserved		
		0001	Reserved		
		0010	8		
		0011	32		
		0100	64		
		0101	16		
		0110	128		
		0111	256		
		1000	512		
		1001	1024		
		1010	2048 4096		
		-			
		* ESPR field : hig SPR field: low b			

The value of ESPR and SPR is used to divide system clock to generate SPI clock (SCK). For example, if the value of ESPR and SPR is '0010' and system clock is 8MHz, SPI clock (SCK) is 1MHz.

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved.	RO	0
2:0	VSPMUX	When VSPMUX register set to '3'. SPI FIFO size is changed 256 entries. Otherwise, SPI FIFO size is 16 entries. The detailed information is in the I2S Part.	R/W	0

VSPMUX (I2S SOURCE PATH MUX CONTROL REGISTER, 0x277F)

8.9. I2C MASTER/SLAVE

I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. It is most suitable for applications requiring occasional communication over a short distance between many devices.

Devices controlling the buses are called as Master. Master is responsible for generation of bus control and synchronizing signals. Slaves just follow the Master. Any I2C device can be either receiver or transmitter. The I2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

I2C core serves both as I2C compatible master and slave. This core supports the following functionalities:

- Both Master and slave operation
- Both Interrupt and non interrupt data-transfers
- Start/Stop generation
- Software programmable acknowledge bit
- Software programmable time out feature
- programmable address register
- Programmable SCL frequency
- Soft reset of I2C Master/Salve
- Programmable maximum SCL low period

I2C_PRER (I2C PRESCALER REGISTER, 0x2794)

I2C PRER is used to pre-scale the SCL clock line.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	PRER	Prescaler for Master SCL generation	R/W	0x10

I2C Maximum Transmission Rate

 $f_{SCL} = f_{sys}/(I2C_PRER*2+4)$ (f_{sys} : I2C block system clock, default 8MHz)

The 4 extra cycles are for clock synchronization and the LOW to HIGH transition of SCL can be delayed if the device with the longest LOW period of SCL line is connected to the I2C bus.

Bit Field	Name	Descriptions	R/W	Reset Value
7	CENB	I2C Core Enable(0:enabled, 1:disabled)	R/W	1
6	INTE	Interrupt Enable (1:enabled, 0:disabled)	R/W	0
5	MS	I2C Mode Selection(1: Master, 0:Slave)	R/W	0
4	START/STOP	Select the START/STOP condition	R/W	0

I2C_CTR (I2C CONTROL REGISTER, 0x2792)

		generation under the master mode. Changing this bit from 0 to 1, START condition is generated. Changing this bit from 1 to 0, STOP condition is generated.		
3	REP_ST	When set to 1, a repeated START condition is generated. If master wish to make another transfer immediately after the current, it can start a new transfer directly by transmitting a repeated START condition instead of a STOP followed by a START. Please refer to [Figure 16] below.	R/W	0
2	NACK_GEN	NACK Generate	R/W	0
1	RXFIFO_RST	Receive FIFO Reset. Auto Clear	R/W	0
0	TXFIFO_RST	Transmit FIFO Reset. Auto Clear	R/W	0

I2C single byte write, then repeated start and single byte read.

The identifiers used are:

- ADDR- Address
- DATA Data
- S Start bit
- Sr Repeated start bit
- P Stop bit
- W/R- Read(1)/ Write(0)
- A-ACK
- N NACK

_	 	_			 _		 							_	 			 	 _	 	 		 		_
	1			1				1				1						1							
C			ADDD		10/	Δ							۱A	Cr.		۸D	np		Λ			۱.		N I	
3			ADDR		VV I	~			DAIA				I ~	3		~D			~		DAIR	٩.			
										1	1														

Figure 16. I2C single byte write, then repeated start and single byte read

I2C_DAT (I2C TRASMIT/RECEIVE DATA REGISTER, 0x2790)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	I2C_DAT	read only for received data. write only for	R/W	-
		send data		

I2C_ADDR (I2C SLAVE ADDRESS REGISTER, 0x2791)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	I2C_ADDR	Slave Address	R/W	0xFF

I2C_STR (I2C INTERRUPT FLAG/STATUS REGISTER, 0x2793)

Bit Field	Name	Descriptions	R/W	Reset Value
7	ADDRESSED	Addressed flag This bit will be set when address of the I2C matches the I2C_ADDR register in the slave mode or when a slave address is sent under the master mode. At read, this bit is cleared.	RO	0

6	MNACKED	Mastered Nacked flag This bit indicates that I2C core detects the non-acknowledgement signal during the acknowledge clock pulse in the master mode. At read, this bit is cleared.	RO	0
5	SNACKED	Slave Nacked Flag This bit indicates that I2C core detects the non-acknowledgement signal during the acknowledge clock pulse in the slave mode. At read, this bit is cleared.	RO	0
4	FINT	FIFO Interrupt flag For the kinds of this flag, please refer to the I2C FINTVAL (0x279E) register.	RO	0
3	BBUSY	Bus Busy flag This indicates that I2C transfer is in progress and bus in not free. This bit will be set on detection of START condition and will be cleared on STOP condition. At read, this bit is cleared.	RO	0
2	BTRANS	Byte Transferred flag This bit indicates that one byte of data is being transferred. This bit will be 1 only after all 8bits is sent. (1: Byte transfer completed, 0: Byte transfer in progress) At read, this bit is cleared.	RO	0
1	Reserved	-		
0	ТО	Time Out	RO	0

I2C_HOLD (I2C SCL/SDA HOLD CYCLE REGISTER, 0x2795)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4	CHOLD	SCL Hold Cycles	R/W	0
3:0	DHOLD	SDA Hold Cycles	R/W	0

I2C_TO (I2C TIME-OUT REGISTER, 0x2796)

This register is for detecting the SCL clock low timeout condition.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	ТО	Time-Out Value	R/W	0xFF

If the current state of SCL stays LOW for a time period greater than time-out value set by I2C_TO register when transfer on the bus is active, the internal time-out reset is generated and the internal state of the I2C is reset, terminating any ongoing transfers. When this register value is 0xFF, the time-out function of SCL line is disabled.

I2C_RXLVL (I2C RX FIFO INTERRUPT LEVEL REGISTER, 0x2797)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RXLVL	RX FIFO Level Interrupt High Threshold	R/W	0

I2C_RXCNT (I2C RX FIFO CURRENT LEVEL REGISTER, 0x2798)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RXCNT	RX FIFO Current Level	R/W	0

I2C_RXSTS (I2C RX FIFO STATUS REGISTER, 0x2799)

Bit Field	Name	Descriptions	R/W	Reset Value
				value
7:6	Reserved		RO	0
5	OVF	RX FIFO Overflow	RO	0
4	FULL	RX FIFO Full	RO	0
3	LVL	RX FIFO Level Hit (RXCNT >= RXLVL)	RO	0
2	EMPT	RX FIFO Empty	RO	1
1	UDF	RX FIFO Underflow	RO	0
0	EMPT	RX FIFO Empty	RO	1

I2C_TXLVL (I2C TX FIFO INTERRUPT LEVEL REGISTER, 0x279A)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TXLVL	TX FIFO Level Interrupt Low Threshold	R/W	0

I2C_TXCNT (I2C TX FIFO CURRENT LEVEL REGISTER, 0x279B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TXCNT	TX FIFO Current Level	R/W	0

I2C_TXSTS (I2C TX FIFO STATUS REGISTER, 0x279C)

Bit Field	Name	Descriptions	R/W	Reset Value
7:6	Reserved		RO	0
5	OVF	TX FIFO Overflow	RO	0
4	FULL	TX FIFO Full	RO	0
3	LVL	TX FIFO Level Hit (TXCNT <= TXLVL)	RO	0
2	EMPT	TX FIFO Empty	RO	1
1	UDF	TX FIFO Underflow	RO	0
0	EMPT	TX FIFO Empty	RO	1

I2C_FINTMSK (I2C FIFO INTERRUPT MASK REGISTER, 0x279D)

Bit Field	Name	Descriptions	Ŕ/W	Reset Value
7:4	Reserved	-	RO	0
3	TXLVL	TX FIFO Level Interrupt Mask. When zero, The Interrupt is masked	R/W	0
2	TXEMPT	TX FIFO Empty Interrupt Mask. When zero, The Interrupt is masked	R/W	0
1	RXLVL	RX FIFO Level Interrupt Mask. When zero, The Interrupt is masked	R/W	0
0	RXRDA	RX FIFO Data Available Interrupt Mask. When zero, The Interrupt is masked	R/W	0

I2C_FINTVAL (I2C FIFO INTERRUPT FLAG REGISTER, 0x279E)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4	Reserved	-	RO	0
3	TXLVL	TX FIFO Level Interrupt Flag. At read, this bit is cleared.	RO	0
2	TXEMPT	TX FIFO Empty Interrupt Flag. At read, this bit is cleared.	RO	0
1	RXLVL	RX FIFO Level Interrupt Flag. At read, this bit is cleared.	RO	0
0	RXRDA	RX FIFO Data Available Interrupt Flag. At read, this bit is cleared.	RO	0

I2C_IMSK (I2C INTERRUPT MASK REGISTER, 0x279F)

Bit Field	Name	Descriptions	R/W	Reset Value
7	ADDRESSED	Addressed Interrupt Mask. When zero, The Interrupt is masked	R/W	0
6	MNacked	Master Nacked Interrupt Mask. When zero, The Interrupt is masked	R/W	0
5	SNacked	Slave Nacked Interrupt Mask. When zero, The Interrupt is masked	R/W	0
4	FINT	FIFO Level Interrupt Mask. When zero, The Interrupt is masked	R/W	0
3	BBUSY	Bus Busy Interrupt Mask. When zero, The Interrupt is masked	R/W	0
2	BTRANS	Byte Transfer Completed Interrupt Mask. When zero, The Interrupt is masked	R/W	0
1	Reserved		RO	0
0	ТО	Time Out Interrupt Mask. When zero, The Interrupt is masked	R/W	0

8.10. IR(Infra-Red) Modulator

Embedded IR Modulator can support NEC PPM (Pulse Position Modulation) format transfer. The carrier duration and duty rate can be set by PPM_TCCNT, PPM_HCCNT. The data bit generation and the duty rate are set by PPM_T0CNT, PPM_H0CNT for bit pattern 0, and by PPM_T1CNT, PPM_H1CNT for bit pattern 1. The bit generation clock is generated by CDIV divisor.

$$Carrier_Freq = \frac{fsystem}{TCCNT}$$
$$Carrier_Duty = \frac{HCCNT}{TCCNT}$$
$$Bit0_Duration = \frac{T0CNT * CDIV}{fsystem}$$

$$Bit 0_Duty = \frac{H0CNT}{T0CNT}$$

$$Bit1_Duration = \frac{T1CNT * CDIV}{fsystem}$$

 $Bit1_Duty = \frac{H1CNT}{T1CNT}$

LCODE (PPM LEADER CODE REGISTER, 0x27A0)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	LCODE	This register is read/write buffer.	R/W	0x0F

PPM_SCODE (PPM STOP CODE REGISTER, 0x27A1)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SCODE	This register is read/write buffer.	R/W	0x00

PPM_CCODE (PPM CUSTOM CODE REGISTER, 0x27A2)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CCODE	This register is rea	ad/write buffer. R/W	0x00

PPM_CCODB (PPM CUSTOM CODE BAR REGISTER, 0x27A3)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CCODB	This register is read/write buffer.	R/W	0xFF

PPM_DCODE (PPM DATA CODE REGISTER, 0x27A4)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CCODE	This register is read/write	buffer. R/W	0x00

PPM_DCODB (PPM DATA CODE BAR REGISTER, 0x27A5)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CCODB	This register is read/write buffer.	R/W	0xFF

PPM_CTL (PPM CONTROL REGISTER, 0x27A6)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	EN	This register is read/write buffer.	R/W	0
6	DONE	TX Done.	RO	0
5	OE	Output Pin Enable	R/W	0
4	CONT	CONT generation	R/W	0
3	CPCC	Copy Custom Code Bar from PPM_CCODE	R/W	1
		register value		
2	IVCC	Invert PPM_CCODE when CPCC=1	R/W	1
1	CPDC	Copy Custom Code Bar from PPM_DCODE	R/W	1
		register value		
0	IVDC	Invert PPM_DCODE when CPDC=1	R/W	1

PPM_POSST (PPM DATA START POSITION REGISTER, 0x27A7)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	POSST	TX Start Bit Position	R/W	0x08

PPM_POSSP (PPM DATA STOP POSITION REGISTER, 0x27A8)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	POSSP	TX Stop Bit Position	R/W	0x29

PPM_TCCNT0 (PPM CARRIER DURATION COUNTER REGISTER, 0x27A9)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TCCNT	PPM Carrier Duration Generation Counter. LSB Part	R/W	0x4A

PPM_TCCNT1 (PPM CARRIER DURATION COUNTER REGISTER, 0x27AA)

Bit Field	Name	Descriptions	R/W	Reset Value
15:8	TCCNT	PPM Carrier Duration Generation Counter. LSB Part	R/W	0x03

PPM_HCCNT0 (PPM CARRIER HIGH COUNTER REGISTER, 0x27AB)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	HCCNT	PPM Carrier High Duration Counter. LSB Part	R/W	0x18

PPM_HCCNT1 (PPM CARRIER HIGH COUNTER REGISTER, 0x27AC)

Bit Field	Name	Descriptions	R/W	Reset Value
15:8	HCCNT	PPM Carrier High Duration Counter. MSB Part.	R/W	0x01

PPM_T0CNT (PPM BIT0 DURATION COUNTER REGISTER, 0x27AD)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TOCNT	PPM Data Bit Pattern 0 Duration Counter	R/W	0x20

PPM_T1CNT (PPM BIT1 DURATION COUNTER REGISTER, 0x27AE)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	T1CNT	PPM Data Bit Pattern 1 Duration Counter	R/W	0x40

PPM_H0CNT (PPM DATA CODE BAR REGISTER, 0x27AF)

Bit Field	Name	De	scriptions	;					R/W	Reset Value
7:0	HOCNT	PP Co	M Data unter	Bit	Pattern	0	High	Duration	R/W	x010

PPM_H1CNT (PPM DATA CODE BAR REGISTER, 0x27B0)

Bit Field	Name		Descriptions	R/W	Reset Value
7:0	H1CNT	•	PPM Data Bit Pattern 1 High Duration	R/W	0x10

PPM_CDIV0 (PPM DATA BAUDRATE DIVISOR REGISTER, 0x27B1)

		,		
Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	CDIV0	PPM Data Baud-rate Generate Divisor. LSB Part	R/W	0x65

PPM_CDIV1 (PPM DATA BAUDRATE DIVISIOR REGISTER, 0x27B2)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CDIV1	PPM Data Baud-rate Generate Divisor. MSB Part	R/W	0x04

8.11. I2S

The I2S function includes the following:

- I2S Interface
- I2S FIFO
- DMA

The data generated through an external ADC is input to the I2S FIFO block in the MG2471 via an I2S interface. Data received via I2S stored in the I2S TXFIFO. The data is then transferred to the MAC TX FIFO through DMA operation and finally transmitted through the PHY layer.

By contrast, received data in the MAC RX FIFO is transferred to the I2S RXFIFO. It is finally transferred to an external DAC via I2S interface.

8.11.1. I2S

In I2S interface, data is transferred MSB first from the left channel, and then from the right channel. There are two ways to send data via I2S TX: writing data to the register by software, or by hardware. This is enabled by using POP field in STXMODE (0x252d). Similarly, there are two ways to receive data via I2S RX: the first is reading the register by software, and the other is by the PUSH field in SRXMODE (0x253d).

There are three methods in I2S interface as follows;

- I2S mode
- Left Justified mode
- Right Justified mode

In I2S mode, left channel data is transferred in order. When left channel data is transferred, LRCK value is '0' and when right channel data is transferred, LRCK value is '1'. Transferred data and LRCK is changed at the falling edge. Refer to the (a) below.

In Left Justified mode, left channel data is transferred whenever LRCK=1 and right channel data is transferred, whenever LRCK=0. LRCK is changed at the falling edge of BLCK. Transferred data is changed at the rising edge of BCLK. Refer to the (b) below.

In Right Justified mode, left channel data allows last LSB to be output before LRCK value goes to '0' and right channel data allows last LSB to be output before LRCK value goes to '1'. LRCK value is changed at the falling edge of BCLK. Output data is changed at the rising edge of BCLK. Refer to the (c) below.

The following shows the interface method for each mode and I2S TX block is selected as Master. The setting of register is as follows. MS field in STXAIC (0x2528) register is set to '1'. WL field is set to '0'(The data of left and right channel represents 16-bit). Other fields are set to '0'. In I2S mode, BCP field in STXAIC (0x2528) register is set to '0'. In other modes, BCP field in STXAIC (0x2528) register is set to '1'.

Figure	17.	Three	Methods	in	12S	Interface
			memeae			monavo

Note : The number of BCLK should be greater than or equal to the configured data word-length.

STXAIC (I2S TX INTERFACE CONTROL REGISTER, 0x2528)

Bit Field	Name	Descriptions	R/W	Reset Value
7	MS	When this field is set to '1', Master mode is configured. When this field is set to '0', Slave mode is configured. Any device can act as the system master by providing the necessary clock signals. A slave will usually derive its internal clock signal from an external clock input.	R/W	1
6:5	FMT	Three modes of operation determined by the value of this field below. 0: I2S mode 1: Right Justified mode 2: Left Justified mode 3: Reserved	R/W	2
4:3	WL	Word Length. This field indicates the number of bits per channel. 0: 16 bit 1: Reserved 2: 24 bit 3: 32 bit	R/W	0
2	LRSWAP	Left/Right Swap.	R/W	0

		When this field is set to '1', the order of the channel for transmitting data is changed. In other words, the data in a right channel is transmitted first.		
1	FRAMEP	When this field is set to '1', the polarity of LRCK is changed. For example, in Left Justified mode, the left channel data is outputted when LRCK=1 and the right channel data is outputted when LRCK=0. However, when this field is set to '1', the right channel data is outputted when LRCK=1 and the left channel data is outputted when LRCK=1 and the left channel data is outputted when LRCK=0.	R/W	0
0	BCP	When this field is set to '1', the polarity of BCLK(Bit Clock) is changed. Clock edge, which allows the data change, is changed.	R/W	0

STXSDIV (I2S TX SYSTEM CLOCK DIVISOR REGISTER, 0x252A)

Bit Field	Name	Descriptions	Ř/W	Reset Value
7:0	STXSDIV	This register sets the value for dividing a system clock to generate MCLK. The equation is as follows: MCLK = System Clock/(2×STXSDIV) When this field is '0', MCLK is not generated.	R/W	0x00

STXMDIV (I2S TX MCLK DIVISOR REGISTER, 0x252B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	STXMDIV	This register sets the value for dividing MCLK to generate BCLK. When STXSDIV register value is '1', BCLK = MCLK/STXMDIV. When STXSDIV register value is greater than 2, BCLK = MCLK/(2×STXMDIV). When this register value is '0', BCLK is not generated.	R/W	0x00

STXBDIV (I2S TX BCLK DIVISOR REGISTER, 0x252C)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	STXBDIV	This register sets the value for dividing BCLK to generate LRCK. LRCK = BCLK/(2×STXBDIV). When this register value is '0', LRCK is not generated.	R/W	0x00

STXMODE (I2S TX MODE REGISTER, 0x252D)

Bit Field	Name	Descriptions	R/W	Reset Value
7	CSHR	This field is meaningful when I2STX block acts in a Slave mode. When this field is set to '1', I2S TX block shares the clock of I2S RX block. In other words, the MCLK of the I2S RX block is input to the MCLK of the I2S TX block and BCLK of I2S RX block is input to the BCLK of I2S TX block. As well, LRCK of I2S RX block	R/W	0

		is input to the LRCK of I2S TX block.		
6	MPOL	This field determines the polarity of MCLK.	R/W	1
0	WIFUL	When this field is '0', MCLK signal retains '1'.	r./vv	1
-	DDOI	When this field is '1', MCLK signal retains '0'.	DAA	
5	BPOL	This field indicates the relationship between	R/W	1
		BCLK and LRCK.		
		When this field is set to '0', LRCK value is		
		changed at the falling edge of BCLK.		
		When this field is set to '1', LRCK value is		
		changed at the rising edge of BCLK.		
		When FMT field in STXAIC(0x2528) register		
		is '0', following configurations are restricted.		
		(BCP field in STXAIC register)		
		BPOL = 0, BCP = 1		
		BPOL = 1, BCP = 0		
		When FMT field is '1', '2', following		
		configurations are restricted.		
		BPOL = 0, BCP = 0		
		BPOL = 1, BCP = 1		
4	B16	This field determines bit width to transfer data	R/W	1
		in I2S block to I2S block.		
		When this field is set to '1', data is transferred		
		by 16-bit data format to I2S block.		
		When this field is set to '0', data is transferred		
		by 8-bit data format to I2S block.	544	
3	POP	When this field is set to '1', data is transferred	R/W	1
		to I2S block.		
		When this field is set to '0', data is not		
0.4	MODE	transferred to I2S block.	DAA	0
2:1	MODE	This field sets the mode of transferred data.	R/W	3
		0: BLK Mode. Transfer a '0'.		
		1: MRT Mode.		
		Only the data in Right channel is		
		transferred.('0' is transferred in Left channel) 2: MLT Mode.		
		Only the data in Left channel is		
		transferred.('0' is transferred in Right		
		channel)		
		3: STR Mode.		
		All data in Left or Right channel are		
		transferred.		
0	CLKENA	Clock Enable.	R/W	0
0		When this field is set to '1', I2S TX is enabled.	1.7.4.4	U U

SRXAIC (I2S RX INTERFACE CONTROL REGISTER, 0x2538)

Bit Field	Name	Descriptions	R/W	Reset Value
7	MS	When this field is set to '1', Master mode is configured. When this field is set to '0', Slave mode is configured. Any device can act as the system master by providing the necessary clock signals. A slave will usually derive its internal clock signal from an external clock input.	R/W	1
6:5	FMT	Three modes determined by the value of this field below. 0: I2S mode 1: Right Justified mode 2: Left Justified mode	R/W	2

		3: Reserved		
4:3	WL	Word Length. This field indicates the number of bit per each channel. 0: 16 bit 1: 20 bit 2: 24 bit 3: 32 bit	R/W	0
2	LRSWAP	Left/Right Swap. When this field is set to '1', the order of the channel for transmitting data is changed. In other words, the data in a right channel is transmitted first.	R/W	0
1	FRAMEP	When this field is set to '1', the polarity of LRCK is changed. For example, in Left Justified mode(FMT=2), data is stored in the left channel when LRCK=1 and data is stored in the right channel when LRCK=0. However, when this field is set to '1', data is stored in the right channel when LRCK=1 and the data is stored in the left channel when LRCK=0.	R/W	0
0	BCP	When this field is set to '1', the polarity of BCLK(Bit Clock) is changed. Clock edge, which allows the data change, is changed.	R/W	0

SRXSDIV (I2S RX SYSTEM CLOCK DIVISOR REGISTER, 0x253A)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRXSDIV	This register sets the value for dividing a system clock to generate MCLK. The equation is as follows: MCLK = System Clock/(2× SRXSDIV) When this field is '0', MCLK is not generated.	R/W	0x00

SRXMDIV (I2S RX MCLK DIVISOR REGISTER, 0x253B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRXMDIV	This register sets the value for dividing MCLK to generate BCLK. When SRXSDIV register value is '1', BCLK = MCLK/SRXMDIV. When SRXSDIV register value is greater than 2, BCLK = MCLK/(2×SRXMDIV). When this register value is '0', BCLK is not generated.	R/W	0x00

SRXBDIV (I2S RX BCLK DIVISOR REGISTER, 0x253C)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	SRXBDIV	This register sets the value for dividing BCLK to generate LRCK. LRCK = BCLK/(2(SRXBDIV). When this register value is '0', LRCK is not generated.	R/W	0x00

SRXMODE (I2S RX MODE REGISTER, 0x253D)

Bit Field	Name	Descriptions	R/W	Reset Value
7	CSHR	This field is meaningful when I2SRX block acts in a Slave mode. When this field is set to '1', I2S RX block shares the clock of I2S TX block. In other words, MCLK of I2S TX block is input to the MCLK of I2S RX block and BCLK of I2S TX block is input to the BCLK of I2S RX block. As well, LRCK of I2S TX block is input to the LRCK of I2S RX block.	R/W	0
6	MPOL	This field determines the polarity of MCLK. When this field is '0', MCLK signal retains '1'. When this field is '1', MCLK signal retains '0'.	R/W	0
5	BPOL	This field indicates the relationship between BCLK and LRCK. When this field is set to '0', LRCK value is changed at the falling edge of BCLK. When this field is set to '1',LRCK value is changed at the rising edge of BCLK.	R/W	0
4	B16	This field determines bit width to transfer data received from external ADC via I2S interface to I2S block. When this field is set to '1', data is transferred by 16-bit data format to I2S block. When this field is set to '0', data is transferred by 8-bit data format to I2S block.	R/W	0
3	PUSH	When this field is set to '1', data received from external ADC via I2S interface is transferred to I2S block. When this field is set to '0', data received from external ADC via I2S interface is not transferred to I2S block.	R/W	0
2:1	MODE	This field sets the mode of transferred data. 0: BLK Mode. Transfer a '0'. 1: MRT Mode. Only the data in Right channel is transferred.('0' is transferred in Left channel) 2: MLT Mode. Only the data in Left channel is transferred.('0' is transferred in Right channel) 3: STR Mode. All data in Left or Right channel are transferred.	R/W	0
0	CLKENA	Clock Enable. When this field is set to '1', I2S RX is enabled.	R/W	0

8.11.2. I2S FIFO

Data received via I2S interface is stored in I2S TXFIFO (0x2800~0x28FF). The size of I2S TXFIFO is 256 byte.

Data in MAC RXFIFO is processed by DMA operation, and stored in I2S RX FIFO (0x2900~0x29FF). Data in I2S RXFIFO is transmitted to an external component via I2S. The size of I2S RXFIFO is 256 byte.

8.11.2.1. I2S TX FIFO CONTROL

VTFDAT (I2S TX FIFO DATA REGISTER, 0x2750)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTFDAT	When writing data to this register, data is stored in I2S TX FIFO in order. When reading this register, data stored in I2S TX FIFO can be read.		0x00

VTFMUT (I2S TX FIFO MUTE DATA REGISTER, 0x2751)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTFMUT	When MUT field in VTFCTL register is set to '1', data in this register is transferred instead of data in I2S TX FIFO. When INI field in VTFCTL register is set to '1', data in I2S TX FIFO is initialized by data in VTFMUT.	R/W	0x00

VTFCTL (I2S TX FIFO CONTROL REGISTER, 0x2752)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved	RO	0
3	VTDENA	I2S TX DMA Enable. When this field is set to '1', I2S TX DMA is enabled. This field value is cleared automatically.	WO	0
2	MUT	When this field is set to '1', data in VTFMUT register is transferred instead of data in I2S TX FIFO. This field can be read.	R/W	0
1	CLR	When this field is set to '1', Write pointer and Read pointer of I2S TX FIFO are initialized. The status value of underflow and overflow is initialized.	WO	0
0	INI	When this field is set to '1', all data in I2S TXFIFO is replaced by the value in VTFMUT register.	WO	0

VTFRP (I2S TX FIFO READ POINTER REGISTER, 0x2753)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	VTFRP	This register indicates the address of I2S TXFIFO to be read next. Since the size of FIFO is 256 byte, LSB is used to test wraparound.	R/W	0x00

VTFWP (I2S TX FIFO WRITE POINTER REGISTER, 0x2754)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	VTFWP	This register indicates the address of I2S TXFIFO to be written next. Since the size of FIFO is 256 byte, LSB is used to test wraparound.	R/W	0x00

VTFSTS (I2S TX FIFO STATUS REGISTER, 0x275A)

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Reserved	RO	0
4	ZERO	When INI field in VTFCTL register is set to '1', data in I2S TX FIFO is initialized by data in VTFMUT register. During this initialization is processed, this field is set to '1'. After initialization is finished, this field is set to '0'.	RO	0
3	PSH	This field is set to '1' while pushing data into I2S TX FIFO.	RO	0
2	POP	This field is set to '1' while popping data on I2S TX FIFO.	RO	0
1:0		Reserved		0

VTDSIZE (I2S TX DMA SIZE REGISTER(I2S TX FIFO->MAC TX FIFO), 0x275B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTDSIZE	Set the data size for DMA operation.	R/W	0x00

8.11.2.2. I2S RX FIFO CONTROL

VRFDAT (I2S RX FIFO DATA REGISTER, 0x2760)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFDAT	When writing data to this register, data is stored in I2S RX FIFO in order. When reading this register, data stored in I2S RX FIFO can be read.		0x00

VRFMUT (I2S RX FIFO MUTE DATA REGISTER, 0x2761)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFMUT	When MUT field in VRFCTL register is set to '1', data in this register is transferred instead of data in I2S RX FIFO. When INI field in VRFCTL register is set to '1',data in I2S RX FIFO is initialized by data in VTFMUT.	R/W	0x00

VRFCTL (I2S RX FIFO CONTROL REGISTER, 0x2762)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved	RO	0
3	VRDENA	I2S RX DMA Enable. When this field is set to '1', I2S RX DMA is enabled. This field value is cleared automatically	WO	0
2	MUT	When this field is set to '1', data in the VRFMUT register is transferred instead of data in the I2S RX FIFO. This field can be read.	R/W	0
1	CLR	When this field is set to '1', Write pointer and Read pointer of I2S RX FIFO are initialized. The status value of underflow and overflow is initialized.	WO	0
0	INI	When this field is set to '1', all data in I2S RXFIFO is replaced by the value in	WO	0

	VRFMUT register.	
1 1	VRFMUT register.	

VRFRP (I2S RX FIFO READ POINTER REGISTER, 0x2763)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFRP	This register indicates the address of I2S RXFIFO to be read next. Since the size of FIFO is 256 byte, the LSB is used to test wrap-around.	R/W	0x00

VRFWP (I2S RX FIFO WRITE POINTER REGISTER, 0x2764)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFWP	This register indicates the address of I2S RXFIFO to be written next. Since the size of FIFO is 256 byte, the LSB is used to test wrap-around	R/W	0x00

VRFSTS (I2S RX FIFO STATUS REGISTER, 0x276A)

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Reserved	RO	0
4	ZERO	When INI field in VRFCTL register is set to '1', data in the I2S TX FIFO is initialized by the data in the VRFMUT register. During the processing of this initialization, this field is set to '1', and set to '0' when initialization is finished.	RO	0
3	PSH	This field is set to '1' while pushing data into the I2S RX FIFO.	RO	0
2	POP	This field is set to '1' while popping data on the I2S RX FIFO.	RO	0
1:0		Reserved	RO	0

VRDSIZE (I2S RX DMA SIZE REGISTER (MAC RX FIFO->I2S RX FIFO), 0x276B)

Bit Field	Name	Descriptions		R/W	Reset Value
7:0	VRDSIZE	Sets the data size for	DMA.	R/W	0x00

8.11.2.3. I2S INTERFACE CONTROL

VTFINTENA (I2S TX FIFO INTERRUPT ENABLE REGISTER, 0x2770)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	EMPTY	I2S TX FIFO Empty Interrupt Enable	R/W	0
6	FULL	I2S TX FIFO Full Interrupt Enable	R/W	0
5:0		Should be set as '0'.		0

VRFINTENA (I2S RX FIFO INTERRUPT ENABLE REGISTER, 0x2771)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	EMPTY	I2S RX FIFO Empty Interrupt Enable	R/W	0
6	FULL	I2S RX FIFO Full Interrupt Enable	R/W	0
5:0		Should be set as '0'.		0

VDMINTENA (I2S DMA CONTROLLER INTERRUPT ENABLE REGISTER, 0x2772)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:5		Should be set as '0'.		0
4	VTDDONE	I2S TX DMA Done Interrupt Enable	R/W	0
3:1		Should be set as '0'.		0
0	VRDDONE	I2S RX DMA Done Interrupt Enable	R/W	0

VTFINTSRC (I2S TX FIFO INTERRUPT SOURCE REGISTER, 0x2773)

Bit Field	Name	Descriptions	R/W	Reset Value		
7	EMPTY	I2S TX FIFO Empty Interrupt Source. When EMPTY field in VTFINTENA register is set to '1' and EMPTY field in VTFINTVAL register is set to '1', this field is set to '1'. Cleared by software.	R/W	0		
6	FULL	I2S TX FIFO Full Interrupt Source	R/W	0		
5:0		Reserved	RO	0		

VRFINTSRC (I2S RX FIFO INTERRUPT SOURCE REGISTER, 0x2774)

Bit Field	Name	Descriptions	R/W	Reset Value
7	EMPTY	I2S RX FIFO Empty Interrupt Source	R/W	0
6	FULL	I2S RX FIFO Full Interrupt Source	R/W	0
5:0		Reserved	RO	0

VDMINTSRC (I2S DMA CONTROLLER INTERRUPT SOURCE REGISTER, 0x2775)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:5		Should be set as '0'.		0
4	VTDDONE	I2S TX DMA Done Interrupt Source	R/W	0
3:1		Should be set as '0'.		0
0	VRDDONE	I2S RX DMA Done Interrupt Source	R/W	0

VCECFG (I2S CONFIG REGISTER, 0x2779)

Bit Field	Name	Descriptions	R/W	Reset Value
7:6	VRFCFG	I2S Rx FIFO Configuration 0: Reserved 1: Selected the R/W path by 8051 CPU 2: Reserved 3: Used as the I2S Rx FIFO	R/W	0
5:4		This field must be set to 3 (11b)	R/W	0
3:2	VTFCFG	I2S Tx FIFO Configuration. 0: Reserved 1: Selected the R/W path by 8051 CPU 2: Reserved 3: Used as the I2S Tx FIFO	R/W	0
1:0		This field must be set to 3 (11b)	R/W	0

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved.	R/W	0
2:0	VSPMUX	 0: The 256 bytes I2S RX/TX FIFO mapped to I2S RX/TX FIFO. 1: I2S RX/TX FIFO mapped to UART0 RX/TX FIFO. 2: I2S RX/TX FIFO mapped to UART1 RX/TX FIFO. 3: I2S RX/TX FIFO mapped to SPI RX/TX FIFO. 7: I2S RX/TX FIFO memory mapped to data memory area (0x1A00-0x1BFF). The data memory area can be extended by the register value. 	R/W	0

VSPMUX (I2S SOURCE PATH MUX CONTROL REGISTER, 0x277F)

8.12. Random Number Generator(RNG)

The random number generator (RNG) generates 32-bit random number with seed. Whenever ENA bit in RNGC register is set to '1', the generated number is stored in RNGD3 \sim RNGD0 register.

RNGD3 (RNG DATA3 REGISTER, 0x2550)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RNGD3	This register stores MSB (RNG[31:24]) of 32-bit random number.	RO	0xB7

RNGD2 (RNG DATA2 REGISTER, 0x2551)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RNGD2	This register stores 2 nd MSB (RNG[23:16]) of 32-bit random number.	RO	0x91

RNGD1 (RNG DATA1 REGISTER, 0x2552)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	RNGD1	This register stores 3 rd MSB (RNG[15:8]) of 32-bit random number.	RO	0x69

RNGD0 (RNG DATA0 REGISTER, 0x2553)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	RNGD0	This register stores LSB (RNG[7:0]) of 32-bit random number.	RO	0xC9

SEED3 (RNG SEED3 REGISTER, 0x2554)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED3	This register stores MSB (SEED[31:24]) of required seed to generate random number.	WO	-

SEED2 (RNG SEED2 REGISTER, 0x2555)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED2	This register stores 2 nd MSB (SEED[23:16]) of required seed to generate random number.	WO	0x00

SEED1 (RNG SEED1 REGISTER, 0x2556)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED1	This register stores 3 rd MSB (SEED[15:8]) of required seed to generate random number.	WO	0x00

SEED0 (RNG SEED0 REGISTER, 0x2557)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED0	This register stores LSB (SEED[7:0]) of required seed to generate random number.	WO	0x00

RNGC (RNG DATA3 REGISTER, 0x2558)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved	RO	0
0	ENA	RNG Enable.	R/W	0
		When this field is set to '1', RNG acts. This field value is changed to '0' automatically.		

8.13. Quadrature Signal Decoder

The Quadrature Signal Decoder block notifies the MCU of the counter value based on the direction and movement of a pointing device, such as a mouse, after receiving Quadrature signal from the pointing device.

Quadrature signal is changed with 90° phase difference (1/4 period) between two signals as shown in [Figure 18]. In addition, counter value means 1/4 of one period. Since this block can receive three Quadrature signals, it can support not only the two-dimensional movement such as mouse but also the pointing device which is in three dimensions.

The (a) of [Figure 18] shows that the XA signal is changing before the XB signal. In this case, the pointing device is moving in the down direction. The (b) of [Figure 17] shows that XB signal is changing before XA signal. In this case, the pointing device is moving in the up direction. The rules for YA, YB, ZA and ZB are the same as described above for XA and XB.

(b) Figure 18. Quadrature signal timing between XA and XB

UDX (UpDown X Register, 0x2560)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved	RO	0
0	UPDN_X	This field notifies the MCU of movement in the X-axis direction. 1: Up 0: Down	RO	0

CNTX (Count X Register, 0x2561)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CNTX	This field notifies the MCU of the count value for movement in the X-axis.	RO	0x00

UDY (UpDown Y Register, 0x2562)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:1		Reserved	RO	0
0	UPDN_Y	This field notifies the MCU of movement in the Y-axis. 1: Up	RO	0
		0: Down		

CNTY (Count Y Register, 0x2563)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CNTY	This field notifies the MCU of the count value for movement in the Y-axis.	RO	0x00

UDZ (UpDown Z Register, 0x2564)

Bit	Name	Descriptions	R/W	Reset		
Field				Value		
7:1		Reserved	RO	0		
0	UPDN_Z	This field notifies the MCU of movement in the Z-axis. 1: Up	RO	0		
		0: Down				

CNTZ (Count Z Register, 0x2565)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CNTZ	This field notifies the MCU of the count value for movement in the Z-axis.	RO	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved	RO	0
2	ENA	Quad Enable. When this field is set to '1', Quadrature Signal Decoder is enabled.	R/W	0
1	INI	Quad Initialize. When this field is set to '1', internal register values of Quadrature Signal Decoder are initialized.	R/W	1
0		Reserved	RO	0

QCTL (Quad Control Register, 0x2566)

8.14. ADC

MG2471 supports the 4-channel ADC with 12bit resolution. The ADC includes an analog multiplexer with up to four individually configurable channels, sigma-delta modulator, decimator, and ADC FIFO. The converted values can be obtained by reading ADCVAL (0x22D7) twice.

The main features of the ADC are as follows;

- Selectable decimation rates and sampling clock
- Four individual input channels, single-ended or differential-ended
- Temperature sensor input
- Battery measurement capability

PHY_CLK_EN1 (ADC CLOCK ENABLE REGISTER, 0x2781)

Bit Field	Name	Descriptions	R/W	Reset Value
3	CLK_ADC_EN	ADC sampling clock on/off. The default value is 0(disabled). The clock rate selection among 1, 2, and 4MHz is done through register ADC_CLK_SEL(0x2786)	R/W	0
2	CLK_DECI_EN	The digital decimator clock on/off. The default value is 0(disabled). The clock rate of CLK_DECI is always 16MHz.	R/W	0

PHY_SW_RSTB (DECIMATOR RESET REGISTER, 0x2784)

Bit Field	Name	Descriptions	R/W	Reset Value
6	RESETB_DECI	Active low reset for digital decimator. This	R/W	1

	register is not automatically cleared,	so the	
	register should be restored manually.		

ADC_CLK_SEL (ADC SAMPLING RATE CONFIGURATION REGISTER, 0x2786)

Bit	Name	Descriptions	R/W	Reset
Field				Value
1:0	ADC_CLK_SEL	The ADC sampling clock rate can be selected among 1, 2, and 4MHz (0x0=1MHz,	R/W	0x2
		0x1=2MHz, 0x2=4MHz, 0x3=Not used) .		

ADCNF1 (ADC CONFIGURATION1 REGISTER, 0x22D4)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	ADCEN	ADC core is activated when it is set to 1.	R/W	0
6:4	-	Reserved	R/W	0x0
		Only '0x0' is allowed.		
3:0	ADCHCNF	ADC channel selection.	R/W	0x0
		0x0: ACH0		
		0x1: ACH1		
		0x2: ACH2		
		0x3: ACH3		
		0x4: ACH0 - ACH1		
		0x5: ACH2 - ACH3		
		0x6: Temperature sensor		
		0x7: Battery monitor(AVDD3V1)		
		0x8: GND		
		The configurations of 0x7 and 0x8 can be used the ADC calibration.	9	

ADCNF2 (ADC CONFIGURATION2 REGISTER, 0x22D5)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4	ADCFIFOSIZE	The size of ADC FIFO. The number of available data in FIFO is ADCFIFOSIZE – 1.	R/W	0xC
3:2	ADCOSRSEL	Oversampling ratio of ADC 0x0: Not used 0x1: 64x 0x2:128x 0x3: 256x	R/W	0x3
1	ADCFIFOEN	Data buffer mode selection. 0: normal delayed buffer, recent samples(ADCFIFOTHRINTR-1) samples are available in the ADC buffer(interrupt is not generated). 1: FIFO mode, when the buffer is full, the data is not stacked in the buffer(before the buffer is full, the data in the buffer should be read out).	R/W	0

ADCSTS (ADC STATUS MONITORING REGISTER, 0x22D6)

Bit Field	Name	Descriptions	R/W	Reset Value
7	-	Reserved	RO	0
6:3	ADCFIFO_NUMD ATA	This field determines number of available data in buffer. Number of available data is ADCFIFO_NUMDATA – 1. The data ready check is possible by !(ADCSTS&0x70)	RO	0x0
2:0	-	Reserved	RO	0x0

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	ADC_DATA	The ADC values in 16bit can be obtained by reading this register twice. The LSB 8bit and MSB 8bit can be read sequentially. Note: Effective resolution(12bit) is acquired by (MSB*256+LSB+8)/16	RO	0x00

ADCVAL (ADC CONVERSION RESULTS READ-OUT REGISTER, 0x22D7)

8.15. Power Management

MG2471 has four operation modes to allow low power consumption. PM0 is the normal operating mode. The other 3 modes, PM1/PM2/PM3, are called power down modes.

Please note that MG2471 does not support the I/O retention mode at PM2 and PM3 because internal the digital regulator is off at entry of PM2 and PM3. At this time, each I/O pins are changed to input mode. MG2471 only supports the pull-up/down configuration retention of each IO pins under the power down modes. The pull-up/down configuration of each I/O pins can be set by GPIOPS0(0x22E7), GPIOPS1(0x22E8), GPIOPS3(0x22E9), GPIOPE0(0x22EA), GPIOPE1(0x22EB), and GPIOPE3(0x22EC) before entering the power down modes. The user of MG2471 should notice the above I/O pull-up/down configuration registers setting value to prevent the unnecessary leakage current consumption.

■ PM0

PM0 is the normal operating mode where the RF transceiver, MCU, and peripherals are active. In PM0, all voltage regulators are on.

■ PM1

PM1 is the power down mode where the 32MHz crystal oscillator and the 16MHz RC oscillator are powered down. The voltage regulator for digital core, the 32kHz oscillator, and the sleep timer are on. MG2471 wakes up from PM1 to PM0 by turning on the 16MHz RC oscillator and the 32MHz crystal oscillator when interrupts are occurred. MG2471 will run on the 16MHz RC oscillator and automatically switch clock source to the 32MHz crystal oscillator has settled.

■ PM2

PM2 is the power down mode where the 32MHz crystal oscillator, the 16MHz RC oscillator, and the voltage regulator for digital core are powered down. In PM2, the 32kHz oscillator and the sleep timer are on. MG2471 wakes up from PM2 to PM0 by turning on the voltage regulator, the 16MHz RC oscillator, and the 32MHz crystal oscillator when interrupts are occurred. PM2 is used when it is relatively long until the expected time for wakeup event.

PM3

PM3 is the power down mode where all clock oscillators, the voltage regulator, and sleep timer are powered down. MG2471 wakes up from PM3 to PM0 by turning on the voltage regulator, the 16MHz RC oscillator, and the 32MHz crystal oscillator when interrupts are occurred. PM3 is used to achieve ultra low power consumption.

Power Management Control

Power down modes (PM1/PM2/PM3) can be set by PDMODE[1:0] in PDCON(0x22E0) register. After setting PDMODE, each power mode can be started by making PCON bit[1] to 1.

MG2471 will wake up from power down modes to PM0 by interrupts, which are the selected

I/O pins, the sleep timer, and the external reset.

All I/O pins can be set as wake up source by set GPIOMSK0(0x22F0), GPIOMSK1(0x22F1), and GPIOMSK3(0x22F2) and polarity of the I/O pins can be set by GPIOPOL0(0x22ED), GPIOPOL1(0x22EE), and GPIOPOL3(0x22EF).

Minimum operation time in PM0 must be over 30usec to re-enter into PM1/PM2/PM3.

8.16. Sleep Timer

Sleep timer is used to exit from the power down modes(PM1/PM2/PM3) The desired clock is generated from the 32kHz RC oscillator or inputs from an external 32.768kHz clock at P1[4] by setting SELRTCLK in PDCON(0x22E0). The sleep timer is activated as setting STEN bit in PDCON(0x22E0) to 1 and the interrupt interval can be programmed by setting RTINT1(0x22E3), RTINT2(0x22E4), RTINT3(0x22E5), and EXPRTVAL bits in PDMON(0x22E6). Sleep timer interval can be programmed by setting RTCPRDSEL in PDMON(0x22E6).

Sleep timer can be also used to RTC interrupt source in the normal operation mode(PM0).

When RTCPRDSEL in PDMON(0x22E6) is set to 1,

Sleep timer interval(sec) is calculated by 65536*EXPRTVAL[1:0] + RTVALSEC[15:0] + 3.904m*RTVALSUB[7:0]

When the RTCPRDSEL in PDMON(0x226) is set to 0,

Sleep timer interval(sec) is calculated by 512*EXPRTVAL[1:0] + 3.904m*RTVALSEC[15:0] + 30.5u*RTVALSUB[7:0] and minimum sleep timer interval must be over 71usec

8.17. 32kHz RC Oscillator

MG2471 has a low-power 32kHz RC oscillator for Sleep timer and watchdog timer. 32kHz RC oscillator is activated when RCOSCEN in PDCON(0x22E0) is set to 1. When the 32MHz crystal oscillator is selected and it is stable, i.e. OSCOK in PDMON(0x22E6) is 1, Frequency calibration of the 32kHz RC oscillator is continuously performed by setting RCCEN in RCOSCON(0x22E1). This calibration is performed in PM0 and retains the last calibration value in power down mode.

8.18. 32.768kHz Crystal Oscillator

The optional 32.768kHz crystal oscillator generates clock for sleep timer and watchdog timer. 32.768kHz crystal oscillator is activated when SELRTCLK in PDCON(0x22E0) is set to 1. When using 32.768kHz crystal oscillator, GPIO P1[3] and P1[4] must configure as high impedance input mode. Refer 8.2 for GPIO configuration.

P1[3] and P1[4] can accept an external digital clock input. If P1[3](P1[4]) is used for external digital clock input, P1[4](P1[3]) must be floating.

It is strongly recommended that 32.768kHz crystal unit should be closed to the chip to prevent increasing current consumption.

8.19. 16MHz RC Oscillator

MG2471 can run on the 16MHz RC oscillator until 32MHz crystal oscillator is stable for fast turn-on time. The 16MHz RC oscillator is activated when HSRCOSCEN in PDCON(0x22E0) is set to 1. When the 32MHz crystal oscillator is selected and it is stable, i.e. OSCOK in

PDMON(0x22E6) is 1, Frequency calibration of the 16MHz RC oscillator is continuously performed by setting HSRCCEN in RCOSCON(0x22E1). This calibration is performed in PM0 and retains the last calibration value in power down mode. The 16MHz RC oscillator consumes less power than the 32MHz crystal oscillator, but it cannot be used for RF transceiver operation.

The 16MHz RC oscillator is automatically turned off in the power down modes. When exiting from the power down mode, HSRCOSC_STS bit (CLKCON2, 0x8F) should be cleared in order to return to the normal mode and HSRCOSC_SEL bit (CLKCON1, 0x8E) should be set to 0 for switching the clock source to the 32MHz crystal oscillator.

8.20. 32MHz Crystal Oscillator

The crystal oscillator generates the reference clock for MG2471. An external 32MHz with two loading capacitors (C11 and C12) is used for the 32MHz crystal oscillator. The load capacitance seen by the 32MHz crystal is given by

$$C_{L} = \frac{1}{\frac{1}{C_{11}} + \frac{1}{C_{12}}} + C_{\text{parasitic}}$$

where $C_{\text{parasitic}}$ represents all parasitic capacitances such as PCB stray capacitance and the package pin capacitance.

8.21. Always-On Registers

All registers bits retain their previous values when entering PM2 or PM3.

Bit Field	Name	Descriptions	R/W	Reset Value
7	BODEN	It enables the Brown out detector(BOD), when DVDD1/DVDD2 falls under operation voltage. 1: Enables the Brown out detector. 0: Disables the Brown out detector.	R/W	1
6	AVREGEN	It controls voltage regulators in Analog part. It must be set to 0 before entering PM0/PM1/PM2 1: Enables voltage regulators in Analog part. 0: Disables voltage regulators in Analog part.	R/W	1
5	STEN	Register for controlling the sleep timer. When STEN is set to 1, the sleep timer operates by 32kHz RC oscillator or external 32.768kHz crystal oscillator. 1: Enables the sleep timer. 0: Disables the sleep timer.	R/W	0
4	HSRCOSCEN	It decides oscillation of the 16MHz RC oscillator. The 16MHz RC oscillator is used for fast turn on from PM1/2/3 or initial power up sequence. 1: Enables the 16MHz RC oscillator. 0: Disables the 16MHz RC oscillator.	R/W	1
3	RCOSCEN	It decides oscillation of the 32kHz RC oscillator. Output clock of the 32kHz RC	R/W	1

PDCON (POWER DOWN CONTROL REGISTER, 0x22E0)

		oscillator is used for sleep timer and the watchdog timer. 1: Enables the 32kHz RC oscillator. 0: Disables the 32kHz RC oscillator.		
2	SELRTCLK	It selects sleep timer clock source. When this field is set to 0, output clock of the 32kHz RC oscillator is used as a clock source. Optionally, the external 32.768kHz crystal oscillator is used as a clock source of the sleep timer and watchdog timer by setting to 1	R/W	0
1:0	PDMODE	Register for power down mode of MG2471 00: Normal operation mode 01: PM1 10: PM2 11: PM3	R/W	00

RCOSC (RC OSCILLATOR CALIBRATION REGISTER, 0x22E1)

Bit Field	Name	Descriptions	R/W	Reset Value
7	-	Reserved	RO	1
6	HSRCCEN	It enables or disables calibration block in the 16MHz RC oscillator. 1: Enables 16MHz RC Calibration. 0: Disables 16MHz RC Calibration.	R/W	0
5	HSRCCRSTB		R/W	0
4	-	Reserved	RO	1
3	RCCEN	It enables or disables calibration block in the 32kHz RC oscillator. 1: Enables 32kHz RC Calibration. 0: Disables 32kHz RC Calibration.	R/W	1
2	RCCRSTB		RO	0
1		Reserved	RO	0
0		Reserved.	RO	0

RTINT1 (SLEEP TIMER INTERVAL CONTROL REGISTER, 0x22E3)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	RTVALSEC[15:8]	This field determines the Sleep timer	R/W	0x00
		interval with RTINT2, RTINT3, and		
		EXPRTVAL bits in PDMON.		

RTINT2 (SLEEP TIMER INTERVAL CONTROL REGISTER, 0x22E4)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	RTVALSEC[7:0]	This field determines the Sleep timer interval	R/W	0x01
		with RTINT1, RTINT3, and EXPRTVAL bits		
		in PDMON.		

RTINT3 (SLEEP TIMER INTERVAL CONTROL REGISTER, 0x22E5)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	RTVALSUB[7:0]	This field determines the Sleep timer interval	R/W	0x00
		with RTINT1, RTINT2, and EXPRTVAL bits		
		in PDMON.		

PDMON (RC OSCILLATOR CALIBRATION REGISTER, 0x22E6)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	RTCPRDSEL	This field determines step of the Sleep timer interval 0: 30.5usec 1: 3.904msec	R/W	1
6	OSCOK	32MHz crystal oscillator status: 0: 32MHz crystal oscillator is not yet stable. 1: 32MHz crystal oscillator is stable.	RO	0
5		Reserved	RO	0
4:3	EXPRTVAL	This field determines the Sleep timer interval with RTINT1, RTINT2, and RTINT3.	R/W	0
2	ACHMEN	It enables or disables ADC input MUX. 1: Enables ADC input MUX. 0: Disables ADC input MUX. (ACH0-ACH3 pins are floated)	R/W	1
1:0		Reserved	RO	0x3

GPIOPS0 (PORT 0, PULL-UP/PULL-DOWN SELECT REGISTER, 0x22E7)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO0_PS	This field selects the configuration of Port 0 as pull-up/pull-down inputs 0: pull-down 1: pull-up	R/W	0xFF

GPIOPS1 (PORT 1, PULL-UP/PULL-DOWN SELECT REGISTER, 0x22E8)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO1_PS	This field selects the configuration of Port 1 as pull-up/pull-down inputs 0: pull-down 1: pull-up	R/W	0xFF

GPIOPS3 (PORT 3, PULL-UP/PULL-DOWN SELECT REGISTER, 0x22E9)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO3_PS	This field selects the configuration of Port 3 as pull-up/pull-down inputs 0: pull-down 1: pull-up	R/W	0xFF

GPIOPE0 (PORT 0, INPUT MODE, 0x22EA)

Bit Name Descriptions R/W Reset

Field				Value
7:0	GPIO0_PE	This field selects input mode of the Port 0. 0: tri-state 1: pull-up/pull-down (see GPIOPS0(0x22E7))	R/W	0xFF

GPIOPE1 (PORT 1, INPUT MODE, 0x22EB)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO1_PE	This field selects input mode of the Port 1. 0: tri-state 1:pull-up/pull-down(see PIOPS0(0x22E8))	R/W	0xFF

GPIOPE3 (PORT 3, INPUT MODE, 0x22EC)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO3_PE	This field selects input mode of the Port 3. 0: tri-state 1:pull-up/pull-down(see PIOPS0(0x22E9))	R/W	0xFF

GPIOPOL0 (PORT 0, INTERRUPT POLARITY, 0x22ED)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO0_POLH	This field changes the polarity of the Port 0. Port 0 is used the wake up source in the PM1/2/3 0: recognizes low level as interrupt signal. 1: recognizes high level as interrupt signal.	R/W	0x00

GPIOPOL1 (PORT 1, INTERRUPT POLARITY, 0x22EE)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO1_POLH	This field changes the polarity of the Port 1. Port 1 is used the wake up source in the PM1/2/3 0: recognizes low level as interrupt signal. 1: recognizes high level as interrupt signal.	R/W	0x00

GPIOPOL3 (PORT 3, INTERRUPT POLARITY, 0x22EF)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO3_POLH	This field changes the polarity of the Port 3. Port	R/W	0x00
		3 is used the wake up source in the PM1/2/3		
		0: recognizes low level as interrupt signal.		
		1: recognizes high level as interrupt signal.		

GPIOMSK0 (PORT 0, INTERRUPT MASK, 0x22F0)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO0_MSK	Port 0 interrupt mask. Port 0 is used the wake up source when this field is set to 1 in PM1/2/3. 0: No interrupt will be acknowledged. 1: Port 0 is individually enabled and Port 0 is used the wake up source.	R/W	0x00

GPIOMSK1 (PORT 1, INTERRUPT MASK, 0x22F1)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	GPIO1_MSK	Port 1 interrupt mask. Port 1 is used the wake up source when this field is set to 1 in PM1/2/3.	R/W	0x00

0: No interrupt will be acknowledged. 1: Port 1 is individually enabled and Port 1 is used the wake up source.		
---	--	--

GPIOMSK3 (PORT 3, INTERRUPT MASK, 0x22F2)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0,	GPIO3_MSK	 Port 3 interrupt mask. Port 3 is used the wake up source when this field is set to 1 in PM1/2/3. 0: No interrupt will be acknowledged. 1: Port 3 is individually enabled and Port 3 is used the wake up source. 	R/W	0x0C

9. TRANSCEIVER

9.1. MAC

The MAC block transmits the data received from high layer to baseband modem, or encrypts it and then transmits to baseband modem. In addition, it indicates the status of PHY and transmits the data received from baseband modem to high layer, or transmits the decrypted data to high layer.

Figure 19. MAC block diagram

[Figure 19] shows the MAC block structure. The RX and TX FIFOs are separately implemented. The size of each FIFO is 256 bytes in order to process one IEEE802.15.4 packet along with buffering one packet. The MAC FIFO and security FIFO shares the address space and are distinguished by setting the register of SECMAP (0x219F). The following table shows the address space of each FIFO.

MTXFIFO or STXFIFO (MAC TX FIFO or SECURITY TX FIFO, 0x2300~0x23FF)

Name	Descriptions	R/W	Reset Value
MTXFIFO or STXFIFO	Random access space for MAC TX FIFO (MTXFIFO; SECMAP = 0) or security TX FIFO (STXFIFO; SECMAP = 1)	R/W	0x00

MRXFIFO or SRXFIFO (MAC RX FIFO or SECURITY RX FIFO, 0x2400~0x24FF)

Name	Descriptions	R/W	Reset Value
MRXFIFO or SRXFIFO	Random access space for MAC RX FIFO (MRXFIFO; SECMAP = 0) or RX security FIFO (SRXFIFO; SECMAP = 1)	R/W	0x00

The general MAC/security control registers except for FIFO control registers are prepared as following.

KEY0 (ENCRYPTION KEY 0 REGISTER, 0x2100~0x210F)

Bit Field	Name	Descriptions	R/W	Reset Value
127:0	KEY0	16-byte key (KEY0) for AES-128 0x210F: Most significant byte	R/W	0

RXNONCE (RX NONCE FOR AUTHENTICATION REGISTER, 0x2110~0x211C)

Bit Field	Name	Descriptions	R/W	Reset Value
103:0	RXNONCE	Used for decryption: 8-byte source address + 4- byte frame counter + 1-byte key sequence counter 0x211C: Most significant byte of source address 0x2114: Most significant byte of frame counter 0x2110: Key sequence counter	R/W	0

KEY1 (ENCRYPTION KEY 1 REGISTER, 0x2130~0x213F)

Bit Field	Name	Descriptions	R/W	Reset Value
127:0	KEY1	16-byte key (KEY1) for AES-128 0x213F: Most significant byte	R/W	0

TXNONCE (TX NONCE FOR AUTHENTICATION REGISTER, 0x2140~0x214C)

Bit Field	Name	Descriptions	R/W	Reset Value
103:0	TXNONCE	Used for encryption: 8-byte source address + 4- byte frame counter + 1-byte key sequence counter 0x214C: Most significant byte of source address 0x2144: Most significant byte of frame counter 0x2140: Key sequence counter	R/W	0

EXTADDR (EXTENDED ADDRESS REGISTER, 0x2150~0x2157)

Bit Field	Name	Descriptions	R/W	Reset Value
63:0	EXTADDR	64-bit IEEE address 0x2157: Most significant byte	R/W	0

PANID (PAN IDENTIFIER REGISTER, 0x2158~0x2159)

Bit Field	Name	Descriptions	R/W	Reset Value
15:0	PANID	16-bit PAN ID 0x2159: Most significant byte	R/W	0

SHORTADDR (SHORT ADDRESS REGISTER, 0x215A~0x215B)

Bit Field	Name	Descriptions	R/W	Reset Value
15:0	SHORTADDR	16-bit short (network) address 0x215B: Most significant byte	R/W	0

MACSTS (MAC/SECURITY STATUS REGISTER, 0x2180)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	ENCDEC	When this field is set to '1', there is data in the	RO	0
		encryption or decryption.		
6	TX_BUSY	When this field is set to '1', data in the TX	RO	0
		FIFO is transmitted to a modem.		

5	RX_BUSY	When this field is set to '1', data is transmitted from a modem to the RX FIFO.	RO	0
4		Reserved		
3	DECODE_OK	This field checks the validity of data according to the type of data received or the address mode. If there is no problem, this field is set to '1'	RO	0
2	ENC_DONE	When encryption operation is finished, this field is set to '1'.	R/W	0
1	DEC_DONE	When decryption operation is finished, this field is set to '1'.	R/W	0
0	CRC_OK	If there is no problem for checking CRC of received packet, this field is set to '1'.	R/W	0

MACRST (MAC/SECURITY RESET REGISTER, 0x2190)

Bit Field	Name	Descriptions	R/W	Reset Value
7	RST_FIFO	When this field is set to '1', the MAC FIFO is initialized.	R/W	0
6	RST_TSM	When this field is set to '1', the MAC TX state machine is initialized.	R/W	0
5	RST_RSM	When this field is set to '1', the MAC RX state machine is initialized.	R/W	0
4	RST_AES	When this field is set to '1', the AES engine is initialized.	R/W	0
3:0		Reserved		0x0

MACCTRL (MAC CONTROL REGISTER, 0x2191)

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Reserved	RO	0
4	PREVENT_ACK	When this field is set to '1', the RX interrupt doesn't occur when the DSN field of received ACK packet is different from the value in MACDSN register during packet reception.	R/W	0
3	PAN_COORDINATOR	When this field is set to '1', function for PAN coordinator is enabled.	R/W	0
2	ADR_DECODE	When this field is set to '1', the RX interrupt doesn't occur when address information of the received packet is not matched with device itself.	R/W	0
1	AUTO_CRC	When this field is set to '1', the RX interrupt doesn't occur when the CRC of the received packet is not valid.	R/W	
0		Reserved	RO	0

MACDSN (MAC DSN, 0x2192)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MACDSN	If the DSN field of the received ACK packet is not equal to MACDSN, the RX interrupt does not occurred.	R/W	0

SECCTRL (SECURITY CONTROL REGISTER, 0x2193)

Bit Field	Name	Descriptions	-0131ER, 022133)	R/W	Reset Value
7	SA_KEYSEL	operation. Whe	Y value for standalone SAES en this field is '1', KEY1 is /hen '0', KEY0 is selected.	R/W	0
6	TX_KEYSEL	during packet	Y value for AES operation transmission. When this field selected and when '0', KEY0 is	R/W	0
5	RX_KEYSEL	when packet re	Y value for AES operation eception. When this field is '1', ed and when '0', KEY0 is	R/W	0
4:2	SEC_M		Authentication field length 4 6 8 10 12 14 16	R/W	0x0
1:0	SEC_MODE	Security mode 0x0: No securi 0x1: CBC-MA0 0x2: CTR mod 0x3: CCM mod	ty C mode e	R/W	0x0

TXL (AES OPERATION LENGTH FOR TRANSMIT PACKET REGISTER, 0x2194)

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved	RO	0
6:0	TXL	This field represents the length used in the AES operation for the packet to be transmitted. It has a different meaning for each security mode as follows.	R/W	0x00
		Security mode: CTR It represents the number of bytes between length byte and the data to be encrypted or decrypted of data in FIFO.		
		Security mode: CBC-MAC It represents the number of byte between length byte and the data to be authenticated.		
		Security mode: CCM It represents the length of data which is used not in encoding or decoding but in authentication.		

(The fact of Electron Center of Received Facility (we iso)				
Bit Field	Name	Descriptions	R/W	Reset Value	
7		Reserved	RO	0	
6:0	RXL	Reserved This field represents the length used in the AES operation for the received packet and it has a different meaning for each security mode as follows. Security mode: CTR It represents the number of bytes between length byte and the data to be encrypted or decrypted of data in FIFO. Security mode: CBC-MAC It represents the number of bytes between length byte and the data to be authenticated. Security mode: CBC-MAC It represents the number of bytes between length byte and the data to be authenticated.	R/W	0x00	
		It represents the length of data which is used not in encoding or decoding but in authentication.			

RXL (AES OPERATION LENGTH FOR RECEIVED PACKET REGISTER, 0x2195)

SECMAP (MAC/SECURITY REGISTER MAP SELECTION REGISTER, 0x219F)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved	RO	0
0	SECMAP	MAC/security control/FIFO register map selection 0x0: MAC control / MAC FIFO selected 0x1: Security control / security FIFO selected	R/W	0

9.1.1. Receive Mode

When receiving the data from the PHY block, the MAC block stores the data in the RX FIFO. The data in the RX FIFO can be read by the MRFCPOP (0x2080) register. Data decryption is implemented by AES-128 algorithm, which supports CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4. The RX Controller controls the process described above. When decrypting the data, the received frame data length is modified and the modified value is stored in the LSB of each frame by the hardware again.

The size of the RX FIFO is 256 bytes and it is implemented by a circular FIFO with a write pointer and a read pointer. The RX FIFO can store several frame data received from the PHY block. Since the LSB of each frame data represents the frame data length, it can be accessed by the write pointer and the read pointer.

When the data is received from the PHY block, the CRC information is checked to verify data integrity.

When AUTO_CRC control bit of MACCTRL (0x2191) register is set to '1', CRC information is verified by the RX CRC block automatically. To check the result, refer to the CRC_OK field of MACSTS (0x2180) register. When the value of CRC_OK field is set to '1', there is no problem with CRC information. When the AUTO_CRC control bit of the MACCTRL (0x2191) register is not set to '1', the CRC information should be verified by the software.

When a packet reception is completed in the PHY block, a PHY interrupt is sent to the MCU. In addition, when decryption operation is completed, an AES interrupt is sent to the MCU.

The following tables show the MAC RX FIFO control registers. Register address space is shared with the security-related register address space. Therefore, the MAC RX FIFO control registers are accessible when SECMAP is 0x0.

MRFCPOP (MAC RX FIFO POP REGISTER, 0x2080)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MRFCPOP	Through this register, data in RX FIFO is read.	RO	

MRFCWP (MAC RX FIFO WRITE POINTER REGISTER, 0x2081)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MRFCWP	RX FIFO write pointer Total size of the write pointer is 9-bit with MRFCWP8 in MRFCSTS register. It is increased by '1' whenever data is written to the RX FIFO.	R/W	0x00

MRFCRP (MAC RX FIFO READ POINTER REGISTER, 0x2082)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MRFCRP	RX FIFO read pointer Total size of the read pointer is 9-bit with MRFCRP8 bit in MRFCSTS register. It is increased by '1' whenever data is read from the RX FIFO.	R/W	0x00

MRFCCTRL (MAC RX FIFO CONTROL REGISTER, 0x2083)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved	RO	0
2	ASA	When this field is set to '1', it automatically sets the starting address of a packet and the length of a packet decrypted by the AES engine to the information of the received packet.	R/W	1
1	ENA	When this field is set to '1', RX FIFO is enabled.	R/W	1
0	CLR	When this field is set to '1', MRFCWP, MRFCRP, MRFCSTS, MRFCSIZE registers are initialized.	R/W	0

MRFCSTS (MAC RX FIFO STATUS REGISTER, 0x2084)

Bit Field	Name	Descriptions	R/W	Reset Value
7	MRFCWP8	Total size of the write pointer is 9-bit address with MRFCWP. This field is MSB, and is used to detect wraparound of a circular FIFO. When MRFCWP8 is manually modified, it should be update along with MRFCWP.	R/W	0
6	MRFCRP8	Total size of the read pointer is 9-bit address with MRFCRP. This field is MSB, and is used to detect wraparound of a circular FIFO. When MRFCRP8 is manually modified, it should be update along with MRFCRP.	R/W	0
5:2		Reserved	RO	0
1	FULL	RX FIFO full This field is set to '1' when data size in RX FIFO is 256 byte.	RO	0
0	EMPTY	RX FIFO empty	RO	0

This field is set to '1' when data size in RX	
FIFO is '0'.	

MRFCSIZE (NUMBER OF DATA IN MAC RX FIFO REGISTER, 0x2085)

Bit Field	Name	Descriptions	R/Ŵ	Reset Value
7:0	MRFCSIZE	This field represents the number of valid data bytes of RX FIFO. This field value is valid when the FIFO status is normal and is calculated by the difference between MRFCWP and MRFCRP.		0x00

9.1.2. Transmit Mode

To transmit the data from a higher layer (MCU) to the PHY block, the device stores the data in the TX FIFO of the MAC block. When the MCU writes data in the MTFCPUSH (0x2000) register, data is stored in TX FIFO of MAC. The size of the TX FIFO is 256 byte and it is implemented by a circular FIFO with a write pointer and a read pointer. Since each data in TX FIFO is mapped to the memory area in the MCU, it can be written or read directly by the MCU.

The data stored in the TX FIFO can be transmitted to the PHY block by the TX request command of PCMD0 (0x2200) register. The TX controller controls the process described above. Data encryption is implemented by the AES-128 algorithm, which supports CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4. The data length which is to be transmitted is stored in the LSB of each frame by the software when the frame data is stored in TX FIFO by the MCU. When the data in TX FIFO is encrypted, the data length is modified and then stored by the hardware again.

When transmitting the data in the TX FIFO, the CRC operation is processed to verify data integrity. When the AUTO_CRC control bit of the MACCTRL (0x2191) register is set to '1', CRC information is generated by TX CRC block automatically. Otherwise, CRC operation should be operated by software.

When data encryption is completed, an AES interrupt is sent to the MCU. When the data transmission to the PHY block is completed, a PHY interrupt is sent to the MCU.

The following tables show the MAC TX FIFO control registers. Register address space is shared with the security-related register address space. Therefore, the MAC TX FIFO control registers are accessible when SECMAP is 0x0.

MTFCPUSH (MAC TX FIFO PUSH REGISTER, 0x2000)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCPUSH	When data is written to this register, it is stored in TX FIFO.	WO	

MTFCWP (MAC TX FIFO WRITE POINTER REGISTER, 0x2001)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCWP	TX FIFO write pointer Total size of the write pointer is 9-bit with MTFCWP8 in MTFCSTS register. It is increased by '1' whenever data is written to the TX FIFO.	R/W	0x00

MTFCRP (MAC TX FIFO READ POINTER REGISTER, 0x2002)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCRP	TX FIFO read pointer Total size of the read pointer is 9-bit with MTFCRP8 bit in MTFCSTS register. It is increased by '1' whenever data is read from the TX FIFO.	R/W	0x00

MTFCCTRL (MAC TX FIFO CONTROL REGISTER, 0x2003)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved	RO	0
2	ASA	When this field is set to '1', it automatically sets the starting address of a packet and the length of a packet encrypted by the AES engine to the information of the packet which is to be transmitted.	R/W	1
1	ENA	When this field is set to '1', TX FIFO is enabled	R/W	1
0	CLR	When this field is set to '1', the MTFCWP, MTFCRP, MTFCSTS, MTFCSIZE registers are initialized.	R/W	0

MTFCSTS (MAC TX FIFO STATUS REGISTER, 0x2004)

Bit Field	Name	Descriptions	R/W	Reset Value
7	MTFCWP8	Total size of the write pointer is 9-bit address with MTFCWP. This field is MSB, and is used to detect wraparound of a circular FIFO. When MTFCWP8 is manually modified, it should be update along with MTFCWP.	R/W	0
6	MTFCRP8	Total size of the read pointer is 9-bit address with MTFCRP. This field is MSB, and is used to detect wraparound of a circular FIFO. When MTFCRP8 is manually modified, it should be update along with MTFCRP.	R/W	0
5:2		Reserved	RO	0
1	FULL	TX FIFO full This field is set to '1' when data size in TX FIFO is 256 byte.	RO	0
0	EMPTY	TX FIFO empty This field is set to '1' when data size in TX FIFO is '0'.	RO	0

MTFCSIZE (NUMBER OF DATA IN MAC TX FIFO REGISTER, 0x2005)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	MTFCSIZE	This field represents the number of valid data bytes of TX FIFO. This field value is valid when the FIFO status is normal and is calculated by the difference between MTFCWP and MTFCRP.	R/W	0x00

9.1.3. Data Encryption and Decryption

Data encryption or decryption is done by the security controller block. Security Controller consists of the block for processing encryption/decryption operation and the block for controlling.

In order to implement CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4, 128-bit key value and a nonce are needed. MG2471 can have two 128-bit key values, KEY0 and KEY1. For encryption, the desired nonce value should be stored in the TX Nonce and KEY0 or KEY1 should be selected for use. For decryption, the desired nonce value should be stored in the RX Nonce and KEY0 or KEY1 should be selected for use. For more detailed information, refer to the IEEE802.15.4 standard document.

The following registers describe the security TX/RX FIFO control registers. They are accessible when SECMAP is 0x1.

00.							
Bit	Name	Descriptions	R/W	Reset			
Field				Value			
7:0	STFCPUSH	When data is written to this register, it is	WO				
		stored in security TX FIFO.					

STFCPUSH (SECURITY TX FIFO PUSH REGISTER, 0x2000)

STFCWP (SECURITY TX FIFO WRITE POINTER REGISTER, 0x2001)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	STFCWP	Security TX FIFO write pointer Total size of the write pointer is 9-bit with STFCWP8 in STFCSTS register. It is increased by '1' whenever data is written to the security TX FIFO.	R/W	0x00

STFCRP (SECURITY TX FIFO READ POINTER REGISTER, 0x2002)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	STFCRP	Security TX FIFO read pointer Total size of the read pointer is 9-bit with STFCRP8 in STFCSTS register. It is increased by '1' whenever data is read from the security TX FIFO.	R/W	0x00

STFCCTRL (SECURITY TX FIFO CONTROL REGISTER, 0x2003)

Bit Field	Name	Descriptions	R/W	Reset Value
7:2		Reserved	RO	0
1	ENA	When this field is set to '1', security TX FIFO is enabled.	R/W	1
0	CLR	When this field is set to '1', STFCWP, STFCRP, STFCSTS, STFCSIZE registers are initialized.	R/W	0

STFCSTS (SECURITY TX FIFO STATUS REGISTER, 0x2004)

Bit Field	Name	Descriptions	R/W	Reset Value
7	STFCWP8	Total size of the write pointer is 9-bit address with STFCWP. This field is MSB, and is used to detect wrap around of a circular FIFO.	R/W	0
6	STFCRP8	Total size of the read pointer is 9-bit address with STFCRP. This field is MSB, and is used to detect wrap around of a circular FIFO.	R/W	0
5:2		Reserved	RO	0
1	FULL	Security TX FIFO full This field is set to '1' when data size in	RO	0

		security TX FIFO is 256 byte.		
0	EMPTY	Security TX FIFO empty This field is set to '1' when data size in security TX FIFO is '0'.	RO	0

STFCSIZE (NUMBER OF DATA IN SECURITY TX FIFO REGISTER, 0x2005)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	STFCSIZE	This field represents the number of valid data bytes of security TX FIFO. This field value is valid when the FIFO status is normal and is calculated by the difference between STFCWP and STFCRP.	R/W	0x00

STFCSECBASE (ENCRYPTION FRAME BASE ADDRESS REGISTER, 0x2007)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	STFCSECBASE	Frame base address for encryption	R/W	0x00

STFCSECLEN (ENCRYPTION FRAME LENGTH REGISTER, 0x2008)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	STFCSECLEN	Frame length for encryption	R/W	0x00

STFDMALEN (DIRECT DATA TRANSFER SIZE REGISTER, 0x2009)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	STFDMALEN	Data size of direct transfer between the	R/W	0x00
		security TX FIFO and the TX FIFO.		

STFDMACTRL (DIRECT DATA TRANSFER CONTROL REGISTER, 0x200A)

Bit Field	Name	Descriptions	R/W	Reset Value
7:2		Reserved	RO	0
1	BUSY	When this field is set to '1', data transfer between the TX security FIFO and the TX FIFO is activated.	RO	0
0	ENA	Enable the direct transfer between the security TX FIFO and the TX FIFO	WO	0

SRFCPOP (SECURITY RX FIFO POP REGISTER, 0x2080)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRFCPOP	Through this register, data in security RX FIFO is read.	WO	

SRFCWP (SECURITY RX FIFO WRITE POINTER REGISTER, 0x2081)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRFCWP	Security RX FIFO write pointer Total size of the write pointer is 9-bit with SRFCWP8 in SRFCSTS register. It is increased by '1' whenever data is written to the security RX FIFO.	R/W	0x00

SRFCRP (SECURITY RX FIFO READ POINTER REGISTER, 0x2082)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRFCRP	Security RX FIFO read pointer Total size of the read pointer is 9-bit with SRFCRP8 in SRFCSTS register. It is increased by '1' whenever data is read from the security RX FIFO.	R/W	0x00

SRFCCTRL (SECURITY RX FIFO CONTROL REGISTER, 0x2083)

Bit Field	Name	Descriptions	Ŕ/W	Reset Value
7:2		Reserved	RO	0
1	ENA	When this field is set to '1', security RX FIFO is enabled.	R/W	1
0	CLR	When this field is set to '1', SRFCWP, SRFCRP, SRFCSTS, SRFCSIZE registers are initialized.	R/W	0

SRFCSTS (SECURITY RX FIFO STATUS REGISTER, 0x2084)

Bit Field	Name	Descriptions	R/W	Reset Value
7	SRFCWP8	Total size of the write pointer is 9-bit address with SRFCWP. This field is MSB, and is used to detect wrap around of a circular FIFO.	R/W	0
6	SRFCRP8	Total size of the read pointer is 9-bit address with SRFCRP. This field is MSB, and is used to detect wrap around of a circular FIFO.	R/W	0
5:2		Reserved	RO	0
1	FULL	Security RX FIFO full This field is set to '1' when data size in security RX FIFO is 256 byte.	RO	0
0	EMPTY	Security RX FIFO empty This field is set to '1' when data size in security RX FIFO is '0'.	RO	0

SRFCSIZE (NUMBER OF DATA IN SECURITY RX FIFO REGISTER, 0x2085)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRFCSIZE	This field represents the number of valid data bytes of security RX FIFO. This field value is valid when the FIFO status is normal and is calculated by the difference between SRFCWP and SRFCRP.	R/W	0x00

SRFCSECBASE (DECRYPTION FRAME BASE ADDRESS REGISTER, 0x2087)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRFCSECBASE	Frame base address for decryption	R/W	0x00

SRFCSECLEN (DECRYPTION FRAME LENGTH REGISTER, 0x2088)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRFCSECLEN	Frame length for decryption	R/W	0x00

Bit	Name	Descriptions	R/W	Reset			
Field				Value			
7:0	SRFDMALEN	Data size of direct transfer between the	R/W	0x00			
		security RX FIFO and the RX FIFO.					

SRFDMALEN (DIRECT DATA TRANSFER SIZE REGISTER, 0x2089)

SRFDMACTRL (DIRECT DATA TRANSFER CONTROL REGISTER, 0x208A)

Bit Field	Name	Descriptions	R/W	Reset Value
7:2		Reserved	RO	0
1	BUSY	When this field is set to '1', data transfer between the security RX FIFO and the RX FIFO is activated.	RO	0
0	ENA	Enable the direct transfer between the security RX FIFO and the RX FIFO	WO	0

9.2. PHY

The baseband PHY (a.k.a. modem) is composed of the O-QPSK modulator and demodulator with simple convolutional channel coder. [Figure 19] shows the baseband PHY structure.

The modulation starts from fetching the data in the TX MAC FIFO. The PHY payload (PHY service data unit; PSDU) can be optionally encoded with the convolutional channel encoder. After appending the preamble, SFD and length field to the PHY payload, a constructed frame (PHY protocol data unit; PPDU) is mapped to designated symbols according to the data-rate control of the PHY controller. Each symbol is accordingly spread by the DSSS chip modulator. The spread PHY bit stream in the chip-level is then modulated to the O-QPSK signal and transmitted by the RF transmitter. For the 250Kbps data-rate packet, its structure is fully compatible with the IEEE802.15.4 O-QPSK PHY specification.

Figure 20. Baseband PHY

With the RF receiver, the received O-QPSK signal is demodulated to the chip sequences. The gain amplifying blocks in the RF receiver are controlled by the automatic gain controller (AGC). The chip sequence is appropriately de-spread by the chip demodulator, and then the start of the designated frame is determined by detecting the synchronization header (preamble and SFD). When the SFD is detected, the baseband PHY generates the interrupt which indicates the start of a packet.

The length and the PHY payload followed by the synchronization header are decoded by the symbol demapper and Viterbi decoder (if the convolutional encoding is applied), and stored in the RX MAC FIFO. When the last data of the PHY payload is stored, the interrupt is generated to indicate the end of the packet reception. After a packet reception interrupt occurs, the RX MAC procedure is performed.

When a packet is received, the baseband PHY provides both of the received signal strength Indicator (RSSI) and the link quality indicator (LQI). They can be used to decide the quality of the communication channel.

While a packet does not exist, the baseband PHY continuously provides the RF channel energy level at antenna. The measured energy level is used to decide the communication channel state. Clear channel assessment (CCA) operation is based on this information. The CCA operation is used to prevent a collision when multiple users try to use a channel simultaneously. When a channel is determined to be busy, packet transmission is deferred until the channel state changes to idle.

9.2.1. Interrupt

The baseband PHY has 4 interrupt sources to notify the MCU of specific events.

• RX END (RXEND_INT)

This interrupt notifies the MCU of the completion of a packet reception. When this interrupt has been generated, the received data in RX MAC FIFO can be handled. Also, the quality of the transmission channel can be checked by reading the RSSI/LQI registers.

• RX START (RXSTART_INT)

This interrupt notifies the MCU of the start of a packet reception. (Note: It is not recommended to use RX START Interrupt normally.)

• TX END (TXEND_INT)

This interrupt notifies the MCU of the end of a packet transmission. A new packet cannot be transmitted until a packet transmission is completed. When a communication channel is busy, a TX END Interrupt can be delayed until a communication channel goes to the idle state and the transmission is completed successfully.

MODEM READY (MDREADY_INT)

This interrupt notifies the MCU that the state of the baseband PHY has changed from the idle state to the ready state (either RX or TX) for requesting "modem ON". The baseband PHY is in the idle state when the supply power is turned on, but needs to be changed to the ready state in order to transmit or receive the packet. This interrupt occurs when the RF transceiver has been stabilized by following the "modem ON" request.

MODEM READY FAIL (MDREADYFAIL_INT)

This interrupt notifies the MCU that the modem block has failed to change state from the idle state to the ready state. When the PLL in the RF transceiver is unlocked during dedicated time interval, this interrupt is generated and the state of the baseband PHY remains at the PLL setting state (although it is a transition state as shown in Figure 25).

The interrupt source can be indentified through the INTSTS register. Some interrupt sources can be masked by setting the INTCON register. The baseband PHY also provides the INTIDX register for indicating the interrupt source. The interrupt sources have priority: MDREADY_INT (0) > TXEND_INT (1) > RXSTART_INT (2) > RXEND_INT (3) > MDREADYFAIL_INT (4). The INTIDX register indicates the highest-priority interrupt source among the present interrupts (not cleared). In order to clear the interrupt, it is sufficient to just read the INTIDX register and then the interrupt is cleared (one by one) in priority order.

INTCLRSEQ (INTERRUPT CLEAR SEQUENCE REGISTER,0x228C)

Bit Field	Name	Descriptions	RW	Reset Value
[7:5]	(Reserved)		RO	0
[4:0]	INTCLRSEQ	Interrupt clear sequence bit Description [0] When this field is set to '1', the modem on interrupt is cleared by interrupt clear command. [1] When this field is set to '1', the tx start interrupt is cleared by interrupt clear command. [2] When this field is set to '1', the rx start interrupt is cleared by interrupt clear command. [3] When this field is set to '1', the rx end interrupt is cleared by interrupt clear command. [4] When this field is set to '1', the modem on fail interrupt is cleared by interrupt clear command.	R/W	0x00

This register is used to set the sequence of interrupt clear.

INTCON (PHY INTERRUPT CONTROL REGISTER, 0x228D)

This register is used to mask off the interrupt of baseband PHY.

Bit Field	Name	Descriptions	RW	Reset Value
7:5	(Reserved)		RO	0
4	MDFAILMSK	This field masks MDFAIL_INT off. When MDFAILMSK field is set to '0', MDFAIL_INT interrupt is not generated.	R/W	0
3	RXENDMSK	This field masks RXEND_INT off. When RXENDMSK field is set to '0', RXEND_INT interrupt is not generated. This interrupt should be used to support the successful packet reception.	R/W	0
2	RXSTMSK	This field masks RXEND_START off. When RXSTMSK field is set to '0', RXSTART_INT interrupt is not generated. RXSTART_INT is not a mandatory interrupt. It is recommended to mask off	R/W	0

		RXSTART_INT interrupt when the rapid packet reception is needed.		
1	TXENDMSK	This field masks TXEND_INT off. When TXENDMSK field is set to '0', TXEND_INT interrupt is not generated. This interrupt should be used to support the successful packet transmission.	R/W	0
0	MDRDYMSK	This field masks MDRDY_INT off. When MRDYMSK field is set to '0', MDRDY_INT interrupt is not generated. This interrupt should be used to check whether a modem block is ready for transmission /reception or not.	R/W	0

INTIDX (PHY INTERRUPT STATUS AND INDEX REGISTER, 0x228E)

This register is used to indicate the kinds of the interrupt when it occurs

Bit Field	Name	Descriptions	RW	Reset Value
7:4		(Reserved)		0
3	ALLINTCLR	This field disables all interrupts when they occur. This field clears all interrupts occurred. When multiple interrupts occur at the same time, the modem block stores them in a buffer and processes them in order. When INTIDX field is read, the executed interrupts are cleared in order. When ALLINTCLR field is set to '0', all the interrupts in buffer are cleared at the same time.	R/W	1
2:0	INTIDX	This register shows the kind of the interrupt when an interrupt occurs, in order if multiple interrupts occur simultaneously. The INTSTS field in the INTSTS register should be used for looking through a list of all interrupts that have been triggered. After reading INTIDX field, executed interrupts are cleared automatically.INTIDXInterrupt 0MDRDYINT interrupt	RO	0
		1 TXEND_INT interrupt 2 RXSTART INT interrupt		
		3 RXEND INT interrupt		
		4 MDFAIL_INT interrupt		

INTSTS (PHY INTERRUPT STATUS REGISTER, 0x228F)

This register is used to indicate the kinds of the interrupt when the multiple interrupts occur.

Bit Field	Name	Descriptions		RW	Reset Value
7:5		(Reserved)			0
4:0	INTSTS	This registe interrupts c represents	errupt status er shows the interrupt status when multiple occur currently. Each bit in INTSTS field the status of a specific interrupt. A table of rupt is shown below. Description MDRDY_INT interrupt TXEND_INT interrupt RXSTART_INT interrupt RXEND_INT interrupt MDFAIL_INT interrupt	R/W	0x1F

When an interrupt is triggered, the INTSTS field corresponding to each interrupt is set to '0'. To clear the executed interrupt, the bit for each of the	
the executed interrupt, the bit for each of the executed interrupts should be reset to '1' by software.	

9.2.2. Data Rate

The MG2471 supports various data rate modes of 31.25Kbps ~ 1Mbps for applications beyond IEEE802.15.4 compliances. The data rate can be selected by using the MDMCNF register (SEL_TXDR and FEC_EN).

The 31.25Kbps ~ 1Mbps modes, which is listed in [Table 9], occupy 2MHz RF channel bandwidth which is the same as the IEEE 802.15.4-2.4GHz 250Kbps standard mode.

The 1Mbps data-rate mode is designed by applying the variable-rate convolutional coding with the same preamble structure as 250Kbps specified in IEEE802.15.4. The other data rate modes are designed by controlling the spreading factor.

Data Rate	Data Rate FEC EN SEL TXDR Comment					
			oomment			
1Mbps	0x1	0x0				
500Kbps	0x0	0x1				
250Kbps	0x0	0x2	IEEE802.15.4 compliant			
125Kbps	0x0	0x3				
62.5Kbps	0x0	0x5				
31.25Kbps	0x0	0x9				

Table 9. Data rate modes

9.2.3. Forward Error Correction

Especially for higher data rate modes, the MG2471 uses the variable-rate convolutional channel coding for forward error correction (FEC). The MG2471 supports the convolution coding with the rates of 1/2, 2/3, and 3/4.

As shown in [Figure 21], the convolutional encoder with the constraint length of 5 is used for the mother convolutional encoder with the rate of 1/2. $G1(x) = x^4 + x + 1$. $G2(x) = x^4 + x^3 + x^2 + 1$. The rates of 2/3 and 3/4 are available by puncturing of the output of the mother convolutional encoder as shown in [Table 10].

Figure 21. Convolutional encoder with rate of 1/2

Code rate	Puncturing matrix	Transmitted sequence
1/2	G1: 1 G2: 1	G1[0] G2[0]
2/3	G1: 1 0 G2: 1 1	G1[0] G2[0] G2[1]
3/4	G1: 1 0 1 G2: 1 1 0	G1[0] G2[0] G2[1] G1[2]

Table 10. Puncturing	j pattern
----------------------	-----------

9.2.4. Packet Format

The MG2471 supports multiple data rates from 31.25Kbps to 1Mbps including 250Kbps specified in IEEE802.15.4. The packet format comparison for high data rates (\geq 250Kbps) with an example payload length of 60-Byte is shown in [Figure 22]. The period of the preamble, SFD, and LEN for 500Kbps, and 1Mbps data-rate modes are the same for 250Kbps mode. Only PHY payload interval is reduced.

The packet format comparison for low data rates (\leq 250Kbps) with an example payload length of 8-Byte is shown in [Figure 23].

Figure 23. Low data rate packet format compared to the 250Kbps mode

PCMD0 (PHY COMMAND0 REGISTER, 0x2200)

This register is used to control the operation of baseband PHY.

Bit Field	Name	Descriptions	RW	Reset Value
[7:6]	(Reserved)	Only '0' allowed.	R/W	0
[5]	MODEM_OF F	When this field is set to '0', the baseband PHY status is changed to OFF. In the OFF state, the RF block is in a power-down state and the modem block is in the reset state. In this state, the MG2471 cannot receive or transmit packets. For the transmission or the reception of a packet, the baseband PHY needs to be changed to ON state. When the baseband PHY goes to OFF state, this field is set to '1' automatically by the hardware.	R/W	1
[4]	MODEM_ON	When this field is set to '0', the baseband PHY status is changed to ON. In ON state, the RF and baseband	R/W	1

		PHY are in the TX or RX ready state. In this state, the modem block controls power-down or power-up for the transmitter or the receiver without an active user application program. When the modem block goes to ON status, this field is set to '1' automatically by the hardware.		
[3]	(Reserved)	Only '1' allowed.	R/W	1
[2]	TX_REQ	When this field is set to '0', the baseband PHY transmits a packet. When a packet transmission is requested, the baseband PHY changes to the TX ready state. Only when a communication channel is in idle state (CCA= '1'), will the packet be transmitted. When the channel is in busy state (CCA= '0'), the transmission is deferred until the channel state goes to idle. This field is set to '1' automatically by hardware after completing the transmission. When the packet transmission is completed successfully, a TXEND_INT interrupt is sent. If the packet transmission is abnormal, the interrupt in not sent and the TXREQ field is set to '1'.	R/W	1
[1:0]	(Reserved)	Only '0' allowed.	R/W	0

PCMD1 (PHY COMMAND1 REGISTER, 0x2201)

This register is used to control the operation of baseband PHY.

Bit Field	Name	Descriptions	RW	Reset Value
[7:2]	(Reserved)	Only '0' allowed.	R/W	0
[1]	TX_OFF	When this field is set to '1', the TX block is forced to be OFF regardless of the control of the baseband PHY state machine.	R/W	1
[0]	RX_OFF	When this field is set to '0', the RX block is forced to be OFF regardless of the control of the baseband PHY state machine.	R/W	1

SETRATE (MODEM DATARATE CONTROL REGISTER, 0x2211)

This register is used to set data rate and FEC encoding.

Bit Field	Name	Descriptions		RW	Reset Value
[7:6]	(Reserved)	Only '0' allowed.		R/W	0
[5:4]	FEC_EN	0x0 : UNCODING	-	R/W	0x0
		0x1 : FEC code r 0x2 : FEC code r			
		0x3 : FEC code r			
[3:0]	SEL_TXDR[3 :0]	Used to select pa	acket data rate	R/W	0x6
	-	SEL_TXDR	Data Rate		
		0x0	1Mbps (with FEC_EN = 0x1)		
		0x1	500Kbps		
		0x2	250Kbps		
		0x3	125Kbps		
		0x5	62.5Kbps		
		0x9	31.25Kbps		

9.2.5. Clear Channel Assessment

While a packet does not exist, the baseband PHY continuously provides the RF channel energy level at antenna. As described before, the measured energy level is used to decide the communication channel state. Clear channel assessment (CCA) operation is based on this information. The CCA operation is used to prevent a collision when multiple users try to use a channel simultaneously. When a channel is determined to be busy, packet transmission is deferred until the channel state changes to idle.

CCA0 (CLEAR CHANNEL ASSESSMENT0 REGISTER, 0X222C)

This register is used to set CCA operation environment.

Bit Field	Name	Descriptions	RW	Reset Value
[7:6]	(Reserved)	Only '0' allowed.	R/W	0
[5]	CCA_FIX	It fixes the communication channel state to idle. A communication channel state is determined by the CCA circuit in MG2471. When a channel state is busy, a packet is not transmitted. This field allows packet transmission regardless of the channel state. When this field is set to '1', the channel is always in idle state.	R/W	1
		This field sets the time duration in which the energy of received signal is measured. It is only valid for the energy detection method.	R/W	0
[4:2]	CCA_AWS	CCA_AWS Energy calculation duration		
		0 1 usec		
		1 2 usec		
		2 4 usec		
		3 8 usec		
		Others 16 usec		
[1:0]	CCAMD	This field sets the method to determine the communication channel state. The following describes the three methods to detect the channel state. Energy detection (ED): This method determines the channel state as 'busy' when the energy of received signal is higher than the defined level. Carrier detection (CD): This method determines the channel state as 'busy' when an IEEE802.15.4 carrier is detected. Frame detection (FD): This method determines the channel state as 'busy' when the normal IEEE802.15.4 packet is detected.	R/W	0
		CCAMD Method		
		0 ED 1 CD		
		1 CD 2 FD		
		3 reserved		
				l

CCA1 (CLEAR CHANNEL ASSESSMENT1 REGISTER, 0X222D)

This register is used to set CCA operation environment.

Bit Field	Name	Descriptions	RW	Reset Value
[7:0]	CCA1	This configures the CCA decision threshold when the energy detection method is used as that of the CCA detection.	R/W	0xB2

9.2.6. Link Quality Indicator

The MG2471 uses correlation results of multiple symbols in order to calculate an estimate of the LQI value. If LQI_EN is "0x1", LQI estimation is automatically performed for every received frame except for FEC encoded packets. LQI values are integers ranging from 0 to 255 as required by the IEEE 802.15.4 standard.

After receiving 8 first symbols following the SFD, The MG2471 provide a correlation average value as a LQI. This is indicated by the LQI_VALID register. The value can be obtained by means of register read.

LQICNF0 (LQI CONTROL0 REGISTER, 0x227E)

This register is used to check LQI valid indicator.

Bit Field	Name	Descriptions	RW	Reset Value
[7]	LQI_VALID	LQI valid indicator :	RO	0
[6:4]	Reserved	Only '0' allowed.	R/W	0x0
[3]	LQI_EN	LQI Enable Register 1 : Enable 0 : Disable	R/W	0
[2:0]	Reserved	Only '0' allowed.	R/W	0x0

LQICNF1 (LQI CONTROL1 REGISTER,0x227F)

This register is LQI value which is computed with correlation value.

Bit Field	Name	Descriptions	RW	Reset Value
[7:0]	LQI	LQI value : 0~ 255	RO	0x00

9.2.7. Received Signal Strength Indicator

When a packet is received, the baseband PHY provides both of the received signal strength Indicator (RSSI). The average energy level of the received RF signal at antenna is stored at AGCSTS2. The average energy level of the received packet is stored at AGCSTS3.

[Figure 23] shows typical measured RSSI plot over whole dynamic range. The typical dynamic range of the RSSI is about 80dB, and the accuracy is less than \pm 3dB.

AGCSTS2 (AGC STATUS2 REGISTER, 0x2284)

The stored energy level is the average of the received signal energy. The indicated value at AGCSTS2 register is stored as a 2's complement integer in dBm.

Bit Field	Name	Descriptions	RW	Reset Value
[7:0]	RXENRG	Average energy level of the received RF signal at antenna.	RO	0x00

AGCSTS3 (AGC STATUS3 REGISTER, 0x2285)

While AGCSTS2 register indicates the average of received signal's energy level for a defined time interval, AGCSTS3 register shows the energy level of the last received packet. The value in AGCSTS3 register is retained until another packet is received.

Bit Field	Name	Descriptions	RW	Reset Value
[7:0]	PKTENRG	Average energy level of the received packet	RO	0x00

Figure 24. Measured RSSI (typical) versus RX input power

9.2.8. RADIO

A simplified block diagram with emphasis on RF and Analog front-end is shown in [Figure 25]. Since the bidirectional differential RF pins are used for RX and TX, no external T/R switch is required. In a receive path, a direct-conversion architecture is adopted. It operates in the 2.4GHz ISM band with excellent receiver sensitivity and robustness to interferers. Transmitter architecture is based on a direct-modulation technique using a direct RF frequency synthesis.

Figure 25. RF and Analog Block Diagram

The LNA amplifies the incoming received RF signal at RF_P and RF_N pins. The gain is controlled coarsely by the AGC block.

The RX Mixer converts the RF signal to the baseband frequency in quadrature(I and Q). Also, the gain is controlled coarsely by the AGC block.

Channel filtering occurs in the LPF(low-pass filter). The VGA(variable-gain amplifier) provides sufficient gain, controlled by AGC, to drive the RX ADC(analog-to-digital converter).

The RX ADC converts the VGA output signals to the signed binary digital signals.

The frequency synthesizer(PLL) generates the carrier signals for channel frequency during reception and feeds the baseband modulation signals directly to the power amplifier during transmission. The center frequency of the desired channel can be adjusted by PLLFREQ register.

The LO generator transforms the differential outputs of the frequency synthesizer into the quadrature(I and Q) signals required for local signals in the RX Mixer.

The TX PA(power amplifier) amplifies the modulated RF signal from the PLL. The transmit power can be controlled by setting two registers of TXPA and TXDA.

In addition, external PA can be used with control pin(s) of TRSW and/or TRSWB. The TRSW and TRSWB is shared with GPIO P1[7] and P1[6] respectively. When MG2471 stays at the transmit mode, TRSW = 1. These pins are available by setting two registers of P1SRC_SEL (SFR) and MONCON1.

PLLFREQ (CHANNEL CENTER FREQUENCY CONTROL REGISTER, 0x22BF)

This register is used to control the frequency of the frequency synthesizer for selecting the desired channel.

Bit Field	Name	Descriptions	RW	Reset Value
[7]	(Reserved)	Only '0' allowed.	R/W	0
[6:0]	PLL_FREQ	Channel center frequency selection register $f_{center} = 2394 + PLL_FREQ (MHz)$ The values of 5xN + 1 where N = 0, 1,, 22 are only valid as that of PLL_FREQ.	R/W	0x33

TXPA (TX PA CONTROL REGISTER, 0x22CE)

This register is used to control the gain of the transmit PA along with TXDA.

Bit Field	Name	Descriptions	RW	Reset Value
[7:4]	(Reserved)	Only '0' allowed.	R/W	0x0
[3:0]	PA_GC	TX power amp control register As the register control value increases form 0x0 to 0xF, the power increases.	R/W	0xF

TXDA (TX DA CONTROL REGISTER, 0x22CF)

This register is used to control the gain of the transmit PA along with TXPA.

Bit Field	Name	Descriptions	RW	Reset Value
[7:5]	(Reserved)	Only '0' allowed.	R/W	0x0
[4:0]	DA_GC	TX power amp control register As the register control value increases form 0x0 to 0xF, the power increases.	R/W	0x1F

P1SRC_SEL (GPIO 1 SOURCE CONTRL REGISTER, 0x9C (SFR))

This register is used to control the GPIO source

Bit Field	Name	Descriptions	RW	Reset Value
[7:0]	P1SRC_SEL	PORT-1 source control register. Each bit of port-1 can be mapped to the specific signal correspondingly. With this register control of P1SRC_SEL = 0xC0, the TRSW and TRSWB which are drived by baseband modem are available through P1[7] and P1[6] respectively.	R/W	0x00

MONCON1 (MONITOR CONTROL REGISTER1, 0x2291)

This register is used to generate the TRSW and TRSWB along with P1SRC_SEL.

Bit Field	Name	Descriptions	RW	Reset Value
[7:0]	MONCON1	Currently, only 0x00 is allowd. This setting of 0x00 generates the TRSW and TRSWB through P1[7] and P1[6].	R/W	0x00

9.3. Operating Modes

Figure 26 MG2471 State transition diagram

MG2471 PHY operation is controlled by the modem FSM shown in [Figure 26]. MG2471 PHY can be initialized by the reset. According to the control of the modem FSM, MG2471 operates in either packet transmitting or packet receiving mode. When the packet to be transmitted is prepared in TX MAC FIFO, MG2471 only operates in the packet transmit mode. Besides, it operates in the packet receiving mode and waits for the packet.

Idle state: MG2471 PHY can be initialized by the reset and the state of the modem FSM is moved to the idle state. In this state, the PHY executes no operation.

RX calibration state: In order to receive the packet correctly, the DC offset of the RF receiver should be calibrated before using it. Before MODEM ON is set, the DC offset of the RF receiver is preferred to be calibrated. When the DC calibration is initiated, the state is transited to RX calibration state. When the RX calibration has completed, the state is automatically transited to idle state. After the initial DC calibration is performed, the DC calibration tracker should be enabled.

TX calibration state: The modulation block of the RF transmitter should be also calibrated. Before MODEM ON is set, the TX modulator is preferred to be calibrated. When the TX calibration is initiated, the state is transited to TX calibration state. When the TX calibration has completed, the state is automatically transited to idle state.

PLL settling state: When the TX calibration is done, the RF synthesizer for channel selection can be configured and then the PLL (RF synthesizer) is started. Additionally, the PLL may be restarted in order to change the RX or TX channel. In the PLL settling state, the modem waits for the PLL to be locked. If the PLL is locked within designed time interval, the interrupt for MODEM READY is generated. Otherwise, the interrupt for MODEM READY FAIL is generated. This state is also a transition state. If the PLL is already locked (it can be clearly identified from the PLL lock detection flag), this state can be skipped.

RF test mode state: The RF test mode state is entered by setting the register as the RF test mode. When the PLL is locked and the RF test mode is set, the modem FSM changes its state from the PLL settling to the RF test mode state. Basically, in this state, the modem operates as the transmitter only. The modem FSM leaves this state to the idle state when the RF test mode becomes disabled.

TX settling state: When the PLL is locked and the packet transmission is requested (from MAC layer), the state of the modem FSM is changed from the PLL settling to the TX settling. In this state, the modem waits for the RF transmitter to be stable. The modem FSM stays at this state during the TX (settling) wait delay which can be configured.

Packet transmit state: After TX (settling) wait delay, the state of the modem FSM is transited to the packet transmit state. In this state, the modem transmits the packet in accordance to the PHY specification. When the packet transmission is completed, the state is moved to the PLL settling state along with generating the interrupt for TX END.

RX settling state: When the PLL is locked and no packet transmission is requested, the state of the modem FSM is changed from the PLL settling to the RX settling state in order to wait for packet coming from other transmitting units. In this state, the modem waits for the RF receiver to be stable. The modem FSM stays at this state during the RX (settling) wait delay which can be configured. If the packet transmission is requested when the state of the modem FSM stays at this state, the modem FSM state state from the RX settling to the PLL settling state.

RX wait state: After RX (settling) wait delay, the state of the modem FSM is transited to the RX wait state. In this state, the modem waits for the packet reception. When the packet is detected, the state is moved to the packet receive state along with generating the interrupt for RX START. If the packet transmission is requested when the state of the modem FSM stays at this state, the modem FSM changes its state from the RX wait to the PLL settling state.

Packet receive state: When the packet is detected at the RX wait state, the state of the modem FSM is moved to the packet receive state. In this state, the modem receives the packet and puts its payload to RX MAC FIFO. At the end of the packet, the state is transited to the RX wait state along with generating the interrupt for RX END.

10. IN-SYSTEM PROGRAMMING (ISP)

The in-system programming (ISP) function enables a user to download an application program to the internal flash memory. When it is power-on, the MG2471 checks the value of MS[2:0] pin. When the value of the MS[2] pin is '1' and the value of the MS[1:0] is '0', ISP mode is selected. The following procedure is to use the ISP function.

- 1. In MS[2:0] pin, MS[2] should be set to'1'. MS[1] and MS[0] should be set to '0'.
- 2. Make RS-232 connection with the PC by using the serial port or the USB-to-Serial adapter. The configuration is 8-bit, no parity, 1 stop bit and 115200 baud rate.
- 3. Power up the device.
- 4. Execute the ISP Host program on PC. (It is included in Development Kit)
- 5. Load an application program in Intel HEX format.
- 6. Download.

When the procedure is finished, an application program is stored in the internal flash memory. To execute the application program, a device should be reset after setting MS[2:0] pin to '0'.

After reset, the application program in the internal flash memory is executed by the internal MCU.

11. PACKAGE INFORMATION

11.1. MG2471 Dimensions (QFN 48-pin)

Figure 27. Package Drawing-QFN48

11.2. Marking

YY : represents the year of assembly WW : two numbers representing the week of assembly

AA : capital letters which represent the order of the lots of any particular product being assembled in any one week. (01,02,...99)

C : Assembly house

X : Mask Version

Figure 28. Chip Marking

RadioPulse Inc

3rd Fl., Hans B/D II, 111-6 Seongnae-Dong, Gangdong-Gu, Seoul, Korea, 134-883, Korea

> URL: <u>www.radiopulse.co.kr</u> Tel: +82-2-478-2963~5 Fax: +82-2-478-2967

> > sales@radiopulse.co.kr

About RadioPulse Inc.

RadioPulse is a Being Wireless solution provider offering wireless communication & network technologies and developing next generation wireless networking technologies.

The new wireless networking solutions envisioned by RadioPulse will enable user to enjoy wireless technologies with easy interface.

Founded in April of 2003, the company maintains it headquarters and R&D center in Seoul, Korea.

Copyright (c) 2014 RadioPulse. All rights reserved.

