

Typical Applications

The HMC773LC3B is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- Military End-Use

Functional Diagram

HMC773LC3B

GaAs MMIC FUNDAMENTAL MIXER, 6 - 26 GHz

Features

Passive: No DC Bias Required Input IP3: +22 dBm LO/RF Isolation: 38 dB Wide IF Bandwidth: DC - 8 GHz 12 Lead Ceramic 3x3 mm SMT Package: 9mm²

General Description

The HMC773LC3B is a general purpose double balanced mixer in a leadless RoHS compliant SMT package that can be used as an upconverter or downconverter between 6 and 26 GHz. This mixer requires no external components or matching circuitry. The HMC773LC3B provides excellent LO to RF and LO to IF suppression due to optimized balun structures. The mixer operates with LO drive levels above +13 dBm. The HMC773LC3B eliminates the need for wire bonding, allowing use of surface mount manufacturing techniques.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, IF = 0.5 GHz, LO = +13 dBm*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF & LO	6 - 16		16 - 26			GHz	
Frequency Range, IF	DC - 8		DC - 8			GHz	
Conversion Loss		9	12		9	11	dB
LO to RF Isolation		37			39		dB
LO to IF Isolation	31	37		21	32		dB
RF to IF Isolation	5	11		10	20		dB
IP3 (Input)		17			22		dBm
IP2 (Input)		45			50		dBm
1 dB Gain Compression (Input)		10			11		dBm

* Unless otherwise noted, all measurements performed as downconverter, IF = 0.5 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC773LC3B

GaAs MMIC FUNDAMENTAL MIXER, 6 - 26 GHz

Conversion Gain vs. Temperature

v04.0514

Conversion Gain vs. LO Drive

IF Bandwidth

Return Loss

Upconverter Performance Conversion Gain vs. LO Drive

MIXERS - SINGLE & DOUBLE BALANCED - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

30

25

20

10

5

0

6

IP3 (dBm) 15

GaAs MMIC FUNDAMENTAL MIXER, 6 - 26 GHz

HMC773LC3B

Input IP3 vs. LO Drive * 30 25 20 IP3 (dBm) 15 10 9 dBm 11 dBm 13 dBm 15 dBm 5 0 14 18 22 26 6 FREQUENCY (GHz)

Input IP2 vs. LO Drive *

10

Input P1dB vs. LO Drive

* Two-tone input power = -5 dBm each tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Input IP3 vs. Temperature*

Input IP2 vs. Temperature *

Input P1dB vs. Temperature

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	XX	14.5	30.3	31.3	53.3
1	0	0	21.6	22.5	46.7
2	69.0	61.7	62.5	63.7	74.6
3 >100 79.4 65.8 68.2 59.6					
RF = 9 GHz @ -10 dBm LO = 8 GHz @ +13 dBm					

All values in dBc below the IF output power level.

Outline Drawing

Absolute Maximum Ratings

RF / IF Input	+21 dBm
LO Drive	+21 dBm
Channel Temperature	150 °C
Continuous Pdiss (Ta = 85 °C) (derate 3.3 mW/°C above 85 °C)	210 mW
Thermal Resistance (junction to ground paddle)	170 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

HMC773LC3B

MIXER, 6 - 26 GHz

GaAs MMIC FUNDAMENTAL

BOTTOM VIEW **PIN 12** .013 [0.32] .014 .009 0.36 REF PIN 1 σσΰ 0.56 .022 .017 1.06 0.94 \Box D **EXPOSED** -.083 [2.10] GROUND .059 [1.50] PADDLE SQUARE

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA.
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, BLACK INK, OR LASER
 - MARK LOCATED APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C -
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC773LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H773 XXXX
[1] Max peak reflow te	mperature of 260 °C			

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC773LC3B

GaAs MMIC FUNDAMENTAL MIXER, 6 - 26 GHz

ROHS V EARTH FRIENDLY

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 7, 9, 10, 12	GND	These pins and package bottom must also be connected to RF/DC ground.	
2	LO	This pin is AC coupled and matched to 50 Ohms.	L0 0
5	IF	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source or sink more than 2 mA of current or part non-function and possible part failure will result.	
8	RF	This pin is AC coupled and matched to 50 Ohms.	RF ○
4, 6, 11	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC773LC3B

GaAs MMIC FUNDAMENTAL MIXER, 6 - 26 GHz

Evaluation PCB

v04.0514

List of Materials for Evaluation PCB 125042 [1]

Item	Description
J1 - J2	SRI SMA Connector
J3	2.92mm PCB Mount K-Connector
U1	HMC773LC3B Mixer
PCB ^[2]	125040 Evaluation PCB

Reference this number when ordering compete evaluation PCB
Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.