

v01.0809

Typical Applications

The HMC818LP4E is ideal for:

- Cellular/3G and LTE/WiMAX/4G
- BTS & Infrastructure
- Repeaters and Femtocells
- Public Safety Radios

Functional Diagram

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Features

Low Noise Figure: 0.85 dB High Gain: 20.5 dB High OIP3: +35 dBm Single Supply: +3V to +5V 50 Ohm Matched Input/Output 24 Lead 4x4mm QFN Package: 16mm²

General Description

The HMC818LP4E is a GaAs pHEMT Dual Channel Low Noise Amplifier that is ideal for Cellular/3G and LTE/WiMAX/4G basestation front-end receivers operating between 1.7 - 2.2 GHz. The amplifier has been optimized to provide 0.85 dB noise figure, 20.5 dB gain and +35 dBm output IP3 from a single supply of +5V. Input and output return losses are excellent and the LNA requires minimal external matching and bias decoupling components. The HMC818LP4E can be biased with +3V to +5V and features an externally adjustable supply current which allows the designer to tailor the linearity performance of each channel of the LNA for a specific application.

Electrical Specifications,

$T_{A} = +25^{\circ}$ C, $R_{bias} = 10K$, Vdd= Vdd1, 2, 3, 4, Idd = Idd1 + Idd2, Idd3 + Idd4

			Vdd	= 3V			Vdd = 5V						
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	17	700 - 200)0	2	000 - 220	0	17	700 - 200	00	20	000 - 220	00	MHz
Gain	15	18		14	16.5		17	20.5		15.5	17.5		dB
Gain Variation Over Temperature		0.010			0.008			0.015			0.012		dB/°C
Noise Figure		0.95	1.2		0.95	1.2		0.85	1.1		0.85	1.1	dB
Input Return Loss		18			17			21			18		dB
Output Return Loss		16			15			15			13		dB
Output Power for 1 dB Compression (P1dB)		14			15			19			21		dBm
Saturated Output Power (Psat)		15			16			20			21.5		dBm
Output Third Order Intercept (IP3)		24.5			25			33			35		dBm
Supply Current (Idd)	30	42	55	30	42	55	78	112	146	78	112	146	mA

* Rbias resistor sets current, see application circuit herein

v01.0809

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Gain vs. Temperature [2]

Output Return Loss vs. Temperature [1]

[1] Vdd = 5V, Rbias = 10K [2] Vdd = 3V, Rbias = 10K

Input Return Loss vs. Temperature [1]

Reverse Isolation vs. Temperature^[1]

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

v01.0809

RoHS EARTH FRIE

Noise Figure vs Temperature [1] 1.6 1.4 +850 1.2 (qB) **NOISE FIGURE** 0.8 0.6 -400 04 Vdd=5V Vdd=3V 0.2 0 2.1 2.2 2.3 1.6 1.7 1.8 1.9 2 FREQUENCY (GHz)

Psat vs. Temperature

Output IP3 and Idd vs. Supply Voltage @ 1700 MHz

[1] Measurement reference plane shown on evaluation PCB drawing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Output P1dB vs. Temperature

Output IP3 vs. Temperature

Output IP3 and Idd vs. Supply Voltage @ 2100 MHz

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

7 - 3

v01.0809

Power Compression @ 1700 MHz [1]

Power Compression @ 2100 MHz [1]

[1] Vdd = 5V [2] Vdd = 3V

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Power Compression @ 2100 MHz [2]

Gain, Power & Noise Figure vs. Supply Voltage @ 2100 MHz

v01.0809

Output IP3 vs. Rbias @ 1700 MHz [1]

Output IP3 vs. Rbias @ 2100 MHz [1]

Cross Channel Isolation [1]

[1] Vdd = 5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Gain, Noise Figure & Rbias @ 2100 MHz [1]

Magnitude Balance [1]

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

v01.0809

Phase Balance [1]

Absolute Bias Resistor Range & Recommended Bias Resistor Values for Idd

		Rbias		Idd (mA)	
Vdd (V)	Min (Ohms)	Max (Ohms)	R1 (Ohms)		
3V	10K ^[2]	Open Circuit	10K	42	
			120	64	
5V	0	Open Circuit	470	82	
			10K	112	

[2] With Vdd= 3V and Rbias < 10K Ohm may result in the part becoming conditionally unstable which is not recommended.

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	6V	
RF Input Power (RFIN) (Vdd = +5 Vdc)	+10 dBm	
Channel Temperature	150 °C	
Continuous Pdiss (T= 85 °C) (derate 19.35 mW/°C above 85 °C)	1.26 W	
Thermal Resistance (channel to ground paddle)	51.67 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

[1] Vdd = 5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Typical Supply Current vs. Vdd (R_{bias} = 10K)

bias					
Vdd (V)	ldd (mA)				
2.7	31				
3.0	42				
3.3	52				
4.5	95				
5.0	112				
5.5	129				

Note: Amplifier will operate over full voltage ranges shown above.

v01.0809

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC818LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>818</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 235 °C

7

v01.0809

ROHS V

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 6	RFIN1, 2	This pin is DC coupled an off chip DC blocking capacitor is required.	RFIN1,2 ○
2, 5, 7, 12, 14, 17, 19, 24	GND	Package bottom must be connected to RF/DC ground.	O GND
3, 4, 9, 10, 21, 22	N/C	No connection required. These pins may be connected to RF/ DC ground without affecting performance.	
23, 20, 8, 11	Vdd1, 2, 3, 4	Power supply voltage for each amplifier. Choke inductor and bypass capacitors are required. See application circuit.	○ Vdd1,2,3,4
18, 13	RFOUT1, 2	This pin is matched to 50 Ohms.	
16, 15	RES1, 2	These pins are used to set the DC current Idd2 and Idd4 in each amplifier via an external biasing resistor. See application circuit.	ESD ESD
		5	<u>.</u>

v01.0809

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Application Circuit

v01.0809

GaAs SMT pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB 122727 [1]

Item	Description		
J1 - J4	PCB Mount SMA RF Connector		
J5, J6	2mm Vertical Molex 8pos Connector		
C1, C2	220 pF Capacitor, 0402 Pkg		
C3, C5, C7, C9	1000 pF Capacitor, 0603 Pkg.		
C4, C6, C8, C10	0.47 µF Capacitor, 0603 Pkg.		
C11, C12	10 kpF Capacitor, 0402 Pkg.		
C13, C14	0 Ohm Resistor, 0402 Pkg.		
L5, L7	15 nH Inductor, 0603 Pkg.		
L6, L8	6.8 nH Inductor, 0603 Pkg.		
R1, R2 (Rbias 1, 2)	10k Ohm Resistor, 0402 Pkg.		
U1	HMC818LP4(E) Amplifier		
PCB [2]	122725 Evaluation PCB		

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D