

XRD54L08/L10/L12

3V, Low Power, Voltage Output Serial 8/10/12-Bit DAC Family

May 2000-2

FEATURES

- 8/10/12-Bit Resolution
- Operates from a Single 3V Supply
- Buffered Voltage Output: 13µs Typical Settling Time
- 145µW Total Power Consumption (typ)
- Guaranteed Monotonic Over Temperature
- Flexible Output Range: 0V to V_{DD}
- 8 Lead SOIC and PDIP Package
- Power On Reset
- Serial Data Output for Daisy Chaining

APPLICATIONS

- Digital Calibration
- Battery Operated Instruments
- Remote Industrial Devices
- Cellular Telephones
- Motion Control
- VXCO Control
- Comparator Level Setting

GENERAL DESCRIPTION

The XRD54L08/L10/L12 are low power, voltage output digital-to-analog converters (DAC) for +3V power supply operation. The parts draw only 50μ A of quiescent current and are available in both an 8-lead PDIP and SOIC package.

The XRD54L08/L10/L12 have a 3 wire serial port with an

output allowing the user to daisy chain several of them together. The serial port will support both Microwire $^{\text{\tiny M}}$, SPI $^{\text{\tiny M}}$, and QSPI $^{\text{\tiny M}}$ standards.

The outputs of the XRD54L08/L10/L12 are set at a gain of +2. The output short circuit current is 7mA typical.

ORDERING INFORMATION

Rev. 1.30

©2000

Part No.	Package	Operating Temperature Range
XRD54L08AID	8 Lead 150 Mil JEDEC SOIC	-40°C to +85°C
XRD54L08AIP	8 Lead 300 Mil PDIP	-40°C to +85°C
XRD54L10AID	8 Lead 150 Mil JEDEC SOIC	-40°C to +85°C
XRD54L10AIP	8 Lead 300 Mil PDIP	-40°C to +85°C
XRD54L12AID	8 Lead 150 Mil JEDEC SOIC	-40°C to +85°C
XRD54L12AIP	8 Lead 300 Mil PDIP	-40°C to +85°C

EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 ♦ (510) 668-7000 ♦ (510) 668-7017

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Pin #	Symbol	Description	
1	SDIN	Serial Data Input	
2	SCLK	Serial Data Clock	
3	CS	Chip Select (Active High)	
4	DOUT	Serial Data Output	
5	AGND	Analog Ground	
6	V _{REFIN}	Voltage Reference Input	
7	V _{OUT}	DAC Output	
8	V _{DD}	Supply Voltage	

ELECTRICAL CHARACTERISTICS

Test Conditions: V_{DD}= 3V, GND= 0V, REFIN= 1.000V (External), R_L= 10k Ω , C_L= 100pF, T_A= T_{MIN} to T_{MAX}, Unless Otherwise Noted.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
Static Perfo	rmance XRD54L08					I
Ν	Resolution	8			Bits	
INL	Relative Accuracy		0.25	0.5	LSB	
DNL	Differential Nonlinearity		0.25	0.5	` LSB	Guaranteed Monotonic
Vos	Offset Error	0	3	8	mV	
TCV _{OS}	Offset Tempco		2		ppm/°C	
PSRR	Offset-Error Power-Supply Rejection Ratio		0.5	1	mV	$2.5V \le V_{DD} \le 3.5V$
GE	Gain Error		0.1	0.4	%FS	
TCGE	Gain-Error Tempco		10		ppm/°C	
PSRR	Power-Supply Rejection Ratio		0.1	1.25	mV	2.5V \leq V_{DD} \leq 3.5V, Measured at FS
Static Perfo	rmance XRD54L10	.			I	
Ν	Resolution	10			Bits	
INL	Relative Accuracy		0.5	1	LSB	
DNL	Differential Nonlinearity		0.50	0.75	` LSB	Guaranteed Monotonic
V _{OS}	Offset Error	0	3	8	mV	
TCV _{OS}	Offset Tempco		2		ppm/°C	
PSRR	Offset-Error Power-Supply Rejection Ratio		0.5	1	mV	$2.5V \leq V_{DD} \leq 3.5V$
GE	Gain Error		0.1	0.4	%FS	
TCGE	Gain-Error Tempco		10		ppm/°C	
PSRR	Power-Supply Rejection Ratio		0.1	1.25	mV	2.5V \leq V_{DD} \leq 3.5V, Measured at FS
Static Perfo	rmance XRD54L12					•
Ν	Resolution	12			Bits	
INL	Relative Accuracy		2	4	LSB	
DNL	Differential Nonlinearity		0.5	-1	LSB	Guaranteed Monotonic
				1.25	LSB	
V _{OS}	Offset Error	0	3	8	mV	
TCV _{OS}	Offset Tempco		2		ppm/°C	
PSRR	Offset-Error Power-Supply Rejection Ratio		1.0	1.25	mV	$2.5V \le V_{DD} \le 3.5V$
GE	Gain Error		0.1	0.4	%FS	
TCGE	Gain-Error Tempco		10		ppm/°C	
PSRR	Power-Supply Rejection Ratio		0.1	1.25	mV	2.5V \leq V _{DD} \leq 3.5V, Measured at FS

Rev. 1.30

T�M

ELECTRICAL CHARACTERISTICS (CONT'D)

Test Conditions: V_{DD} = 3V, GND= 0V, REFIN= 1.000V (External), R_L= 10k Ω , C_L= 100pF, T_A= T_{MIN} to T_{MAX}, Unless Otherwise Noted.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
Voltage Out	put (V _{OUT}) XRD54L08/L10/L12					
Vo	Output Voltage Range	0		V _{DD} -0.4	V	
V _{REG}	Output Load Regulation		2	4	mV	$V_{OUT} = 2V, R_L = 2k\Omega$
+I _{SC}	Short-Circuit Current, Sink		11		mA	$V_{OUT} = V_{DD}$
-I _{SC}	Short-Circuit Current, Source		2.5		mA	V _{OUT} = GND
Voltage Ref	erence Input (V _{REFIN}) XRD54L08/L	10/L12				
V_{REFIN}	Voltage Range	0		V _{DD}	V	Output Swing Limited, Not Code Dependent
R _{IN}	Input Resistance	40	65		kΩ	
TCRIN	Input Resistance Tempco		1500		ppm/°C	
C _{IN}	Input Capacitance		32	40	pF	Not Code Dependent
AC _{FT}	AC Feedthrough		-80		dB	REFIN = 1kHz, 2Vp-p, SD _{IN} =000h
Digital Input	ts (SDIN, SCLK, CS) XRD54L08/L1	0/L12				
V _{IH}	Input High	2.0			V	
VIL	Input Low			0.8	V	
I _{IN}	Input Current			`1	μA	V _{IN} =0V or V _{DD}
C _{IN}	Input Capacitance		10		pF	
Digital Outp	ut (DOUT) XRD54L08/L10/L12					•
V _{OH}	Output High	V _{DD} -1			V	I _{SOURCE} =4mA
V _{OL}	Output Low			0.4	V	I _{SINK} =4mA
Dynamic Pe	rformance XRD54L08/L10/L12					•
SR	Voltage-Output Slew Rate	0.13	0.21		V/μs	T _A =+25°C
t _s	Voltage-Output Settling Time		13	15	μs	` 1/2LSB, V _{OUT} =2V
D_{FT}	Digital Feedthrough		1		nV-s	CS=V _{DD} , SDIN=SCLK=100kHz
SINAD	Signal-to-Noise Plus Distortion		68		dB	V _{REFIN} =1kHz, 2Vp-p F.S., SDIN=Full Scale –3dB BW=250kHz
Power Supp	bly XRD54L08/L10/L12					•
V _{DD}	Positive Supply Voltage	2.5		3.5	V	
I _{DD}	Power Supply Current		35	60	μΑ	All Inputs=0V or V _{DD} , Output=No Load, V _O =0V, I _{REF} Not Included
Switching C	haracteristics XRD54L08/L10/L12				•	•
t _{CSS}	CS Setup Time	10	20		ns	
t _{CSH0}	SCLK Fall to \overline{CS} Fall Hold Time	5			ns	
t _{CSH1}	SCLK Fall to CS Rise Hold TIme	0			ns	

Notes: ¹ Total supply current consumption = I_{DD} + I_{REF} + (V_{OUT} / 70K.)

ELECTRICAL CHARACTERISTICS (CONT'D)

Test Conditions: V_{DD}= 3V, GND= 0V, REFIN= 1.000V (External), R_L= 10k Ω , C_L= 100pF, T_A= T_{MIN} to T_{MAX}, Unless Otherwise Noted.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
t _{CH}	SCLK High Width	20	35		ns	
t _{CL}	SCLK Low Width	20	35		ns	
t _{DS}	D _{IN} Setup Time	10	45		ns	
t _{DH}	D _{IN} Hold Time	0			ns	
t _{DO}	D _{OUT} Valid Propagation Delay		8	15	ns	C _L = 50pF
t _{CSW}	CS High Pulse Width	20	40		ns	
t _{CS1}	CS Rise to SCLK Rise Setup Time	10	20		ns	

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V, +5V
Digital Input Voltage to GND	-0.3V, V _{DD} +0.3V
V _{REFIN}	-0.3V, V _{DD} +0.3V
V _{OUT} ¹	V _{DD} , GND
Continuous Current, Any Pin	20mA.+20mA

 $\begin{array}{l} \mbox{Package Power Dissipation Ratings} (T_A = +70^{\circ}C) \\ \mbox{PDIP (derate 9mW/°C above +70°C)} & \dots & 117mW \\ \mbox{SOIC (derate 6mW/°C above +70°C)} & \dots & 155mW \\ \mbox{Operating Temperature Range} & \dots & -40^{\circ}C \ to + 85^{\circ}C \\ \mbox{Storage Temperature Range} & \dots & -65^{\circ}C \ to + 165^{\circ}C \\ \mbox{Lead Temperature (soldering, 10 sec)} & \dots & +300^{\circ}C \end{array}$

Notes

¹ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

² Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.

TIMING

Figure 2. Timing Diagram

	Input		Output
1111	1111	(0000)	+ 2 $(V_{REFIN}) \frac{255}{256}$
1000	0001	(0000)	+ 2 (VREFIN) 129 256
1000	0000	(0000)	$+ 2 \left(V_{REFIN} \right) \frac{128}{256} = + V_{REFIN}$
0111	1111	(0000)	+ 2 (VREFIN) <u>127</u> 256
0000	0001	(0000)	+ 2 $(V_{REFIN}) \frac{1}{256}$
0000	0000	(0000)	0V

Note:

Write 8-bit data words with four sub-LSB 0s because the DAC input latch is 12 bits wide.

Table 1. Binary Code Table

THEORY OF OPERATION

XRD54L08/L10/L12 Description

The XRD54L08/L10/L12 are micro-power, voltage output, serial daisy-chain programmable DACs operating from a single 3V power supply. The DACs are built on a 0.6 micron CMOS process. The features of these DACs make it well suited for industrial control, low distortion audio, battery operated devices and cost sensitive designs that want to minimize pin count on ICs.

Resistor String DAC

A resistor string architecture converts digital data using a switch matrix to an analog signal as shown in Figure 3.

Figure 3. XRD54L08/L10/L12 DAC Architecture

The resistor string architecture provides a non-inverted output voltage (V_{OUT}) of the reference input (V_{RFFIN}) for single supply operation while maintaining a constant input resistance. Unlike inverted R-2R architectures the reference input resistance will remain constant independent of code. This greatly simplifies the analog driving source requirements for the reference voltage and minimizes distortion. Similarly input capacitance varies only approximately 4pF over all codes.

Fixed Gain +2 Voltage Output Amplifier

A high open-loop gain operational amplifier buffers the resistor string with a stable, fixed gain of +2. The voltage output will settle within 13 s. The output is short circuit protected and can regulate an output load of 2V into 2k within 2mV at 25°C.

While the reference input will accept a voltage from rail-to-rail, the linear input voltage range is constrained by the output swing of the fixed +2 closed-loop gain amplifier. Full scale output swing is achieved with an external reference of approximately $1/2 V_{DD}$. The reference voltage must positive because the be XRD54L08/L10/L12 DAC is non-inverting.

Serial Daisy-Chainable Digital Interface

The three wire serial interface includes a DOUT to enable daisy-chaining of several DACs. This minimizes pin count necessary of digital asics or controllers to address multiple DACS. The serial interface is designed for CMOS logic levels. Timing is shown in Figure 2. The binary coding table (Table 1) shows the DAC transfer function.

A power on reset circuit forces the DAC to reset to all "0"s on power up.

APPLICATION NOTES

Serial Interface

The XRD54L08/L10/L12 family has a three wire serial interface that is compatible with Microwire[™], SPI[™] and QSPI[™] standards. Typical configurations are shown in Figure 4 and Figure 5. Maximum serial port clock rate is limited by the minimum pulse width of t_{CH} and t_{CI} . Feedthrough noise from the serial port to the analog output (V_{OUT}) is minimized by lowering the frequency of the serial port and holding the digital edges to >5ns.

XPEXAR

Figure 4. Typical Microwire[™] Application Circuit

Figure 6. Shift Register Format

The DACs are programmed by a 16 bit word of serial data. The format of the serial input register is shown in Figure 6. The leading 4 bits are not used to update the DAC. If the DAC is not daisy-chained then only a 12 bit serial word is needed to program the DAC. The next 8, 10 or 12 bits after the 4 leading bits are data bits. The XRD54L08's first 8 bits are valid data and the trailing 4 bits must be set to 0. Figure 7 demonstrates the 16 bit digital word for the 8, 10,12 bit DACs.

Part	Leading Unused Bits	Data Bits MSB LSB		Trailing "0" Bits
XRD54L12	XXXX	XXXXXXXX		None
XRD54L10	XXXX	XXXXXXXX		00
XRD54L08	XXXX	XXXXXX	XX	0000

Table 2. 16-Bit Digital Word Register for XRD54L08, XRD54L10, XRD54L12.

SCLK should be held low when CS transitions low. Data is clocked in on the rising edge of SCLK when \overline{CS} is low. SDIN data is held in a 16 bit serial shift register. The DAC is updated with the data bits on the rising edge of \overline{CS} . When CS is high data is not shifted into the XRD54L08/L10/L12.

Daisy-Chaining

The digital output port (DOUT) has a 4mA drive for greater fan-out capability when daisy-chaining. DOUT allows cascading of multiple DACs with the same serial data stream. The data at SDIN appears at DOUT after 16 clock cycles plus one clock width (t_{CH}) and a propagation delay (t_{DO}). DOUT remains in the state of the last data bit when CS is high. DOUT changes on the falling edge of SCLK when CS is low.

Any number of DACs can be connected in this way by connecting DOUT of one DAC to SDIN of the next DAC.

AC_{FT} Feedthrough (DAC Code = 0)

AC Feedthrough from V_{REFIN} to V_{OUT} is minimized with low impedance grounding as shown in Figure 7. If the DAC data is set to all "0"s then V_{OUT} is a function of the divider between the DAC string impedance and ground impedance. See the Power Supply and Grounding section for recommendations. The typical AC feedthrough for a 1kHz 2Vpp signal with code = 0 is -80dB.

Compatible with MAX515 & MAX539

The XRD54L08/L10/L12 family of DACs are functionally campatible with the MAX515 & MAX539 while providing significant improvements. The XRD54L08/L10/L12 DACs have lower power, faster serial ports, and a constant reference impedance to minimize the reference driving requirements and maximize system linearity while

operating from a 3V supply versus 5V for the MA515 and MAX539. The DOUT port also has 4mA driving capability for greater fan-out when daisy-chaning to other digital inputs.

Monotonicity

The XRD54L08/L10/L12 family of DACs are monotonic over the entire temperature range.

Micro-Power Operation

The XRD54L08/L10/L12 are the lowest power DACs in their class. The quiescent current rating does not include the reference ladder current. Power can be saved when the part is not in use by setting the DAC code to all "0"s assuming the output load is referenced to ground. This minimizes the DAC output load current. An analog switch placed in series with the reference ladder can toggle the reference voltage off when the circuit is inactive to minimize power consumption.

PERFORMANCE CHARACTERISTICS

Power Supply and Grounding

Best parametric results are obtained by powering the XRD54L08/L10/L12 family of DACs from an analog +3V power supply and analog ground. Digital power supplies and grounds should be separated or connected to the analog supplies and grounds only at the low-impedance power-supply source. This is best accomplished on a multilayer PCB with dedicated planes to ground and power. The DACs should be locally bypassed with both 0.1 F and 2.2 F capacitors mounted as close as possible to the power supply pin (V_{DD}). Surface mount ceramic capacitors are recommended for low impedance, wide band power supply bypass. If only one +3V power supply is available for both analog and digital circuity isolate the analog power supply to the XRD54L08/L10/L12 DAC with an inductor or ferrite bead before the local bypass capacitors.

Figure 8. XRD54L08 INL (For XRD54L10 and XRD54L12, Scale Axes Accordingly)

Figure 9. XRD54L08 DNL (For XRD54L10 and XRD54L12, Scale Axes Accordingly)

T�M

11

XPEXAR

Figure 14. I_{DD} vs. Temperature

Figure 15. Closed Loop Gain vs. Frequency

Frequency (KHz)

Figure 16. Closed Loop Phase vs. Frequency

Microwire[™] is a trademark of National Semiconductor Corproation. **SPI**[™] and **QSPI**[™] are trademarks of Motorola Corporation.

8 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP)

Rev. 2.00

	INC	HES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	МАХ
А	0.145	0.210	3.68	5.33
A ₁	0.015	0.070	0.38	1.78
A ₂	0.115	0.195	2.92	4.95
В	0.014	0.024	0.36	0.56
B ₁	0.030	0.070	0.76	1.78
С	0.008	0.014	0.20	0.38
D	0.348	0.430	8.84	10.92
E	0.300	0.325	7.62	8.26
E ₁	0.240	0.280	6.10	7.11
е	0.1	00 BSC	2.5	4 BSC
e _A	0.3	00 BSC	7.6	2 BSC
e _B	0.310	0.430	7.87	10.92
L	0.115	0.160	2.92	4.06
α	0°	15°	0°	15 [°]

Note: The control dimension is the inch column

Rev. 1.30

8 LEAD SMALL OUTLINE (150 MIL JEDEC SOIC)

Rev. 1.00

	INC	HES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.053	0.069	1.35	1.75
A ₁	0.004	0.010	0.10	0.25
В	0.013	0.020	0.33	0.51
С	0.007	0.010	0.19	0.25
D	0.189	0.197	4.80	5.00
E	0.150	0.157	3.80	4.00
е	0.0	50 BSC	1.2	7 BSC
Н	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27
α	0°	8°	0°	8°

Note: The control dimension is the millimeter column

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

All trademarks and registered trademarks are property of their respective owners.

Copyright 2000 EXAR Corporation Datasheet May 2000 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

