SEMICONDUCTOR

74ALVC16500

Low Voltage 18-Bit Universal Bus Transceivers with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16500 is an 18-bit universal bus transceiver which combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the HIGH-to-LOW transition of CLKAB. When OEAB is HIGH, the outputs are active. When OEAB is LOW, the outputs are in a highimpedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active HIGH and OEBA is active i ow)

The ALVC16500 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O capability up to 3.6V.

The 74ALVC16500 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD} (A to B, B to A)
- 3.4 ns max for 3.0V to 3.6V V_{CC}
- 4.0 ns max for 2.3V to 2.7V V_{CC}
- 7.0 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance:
 - Human body model > 2000V Machine model >200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OEBA}}$ should be tied to V_{CC} through a pull-up resistor and OEAB should be tied to GND through a pull-down resistors; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

October 2001

Revised October 2001

Ordering Code:

Order Number	Package Number	Package Description
4ALVC16500MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wid
Devices also available or	Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

74ALVC16500

Connection Diagram							
OEAB —	1	56	— GND				
LEAB —	2	55	- CLKAB				
A ₁ -	3	54	— В ₁				
GND —	4	53	— GND				
A2-	5	52	— в ₂				
A3 —	6	51	— B ₃				
v _{cc} —	7	50	-v _{cc}				
A4	8	49	— В ₄				
A5 —	9	48	— B ₅				
А ₆ —	10	47	— в ₆				
GND —	11	46	— GND				
A ₇ —	12	45	— В ₇				
4 ₈ —	13	44	— В ₈				
A ₉ —	14	43	— В ₉				
A ₁₀ —	15	42	— В ₁₀				
A ₁₁	16	41	— В _{1 1}				
A ₁₂ -	17	40	— В _{1 2}				
GND —	18	39	— GND				
A ₁₃ -	19	38	— В _{1 3}				
A ₁₄ —	20	37	— В ₁₄				
A ₁₅	21	36	— В ₁₅				
v _{cc} —	22	35	-ν _{cc}				
A ₁₆	23	34	— В ₁₆				
A ₁₇ -	24	33	— В ₁₇				
GND —	25	32	— GND				
A ₁₈ -	26	31	— В _{1 8}				
OEBA -	27	30	- CLKBA				
LEBA —	28	29	- GND				
			1				

Pin Descriptions

Pin Names	Description
OEAB	Output Enable Input for A to B Direction (Active HIGH)
OEBA	Output Enable Input for B to A Direction (Active LOW)
LEAB, LEBA	Latch Enable Inputs
CLKAB, CLKBA	Clock Inputs
A ₁ -A ₁₈	Side A Inputs or 3-STATE Outputs
B ₁ –B ₁₈	Side B Inputs or 3-STATE Outputs

Function Table (Note 2)

	Inp	outs		Outputs
OEAB	LEAB	CLKAB	A _n	B _n
L	Х	х	Х	Z
н	н	х	L	L
н	н	х	н	н
н	L	\downarrow	L	L
н	L	\downarrow	н	н
н	L	н	х	B ₀ (Note 3)
н	L	L	Х	B ₀ (Note 4)

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs may not float) Z = High Impedance

Note 2: A-to-B data flow is shown; B-to-A flow is similar but uses $\overline{\text{OEBA}}$, LEBA and $\overline{\text{CLKBA}}$. $\overline{\text{OEBA}}$ is active LOW.

Note 3: Output level before the indicated steady-state input conditions were established.

Note 4: Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 5)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 6)	-0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operating

Conditions (Note 7)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V _{CC}
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 6: I_O Absolute Maximum Rating must be observed.

Note 7: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
VIL	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = 100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 12 mA	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l	Input Leakage Current	$0 \le V_l \le 3.6V$	3.6		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
lcc	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μΑ

www.fairchildsemi.com

AC Electrical Characteristics

Symbol		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$								
	Parameter	C _L = 50 pF			C _L = 30 pF			Units		
		$V_{CC} = 3.3V \pm 0.3V$		$V_{CC} = 2.7V$		$V_{CC} = \textbf{2.5V} \pm \textbf{0.2V}$		$V_{CC}=1.8V\pm0.15V$		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		200		100		MHz
t _{PHL} , t _{PLH}	Propagation Delay	1.1	3.4	1.3	4.0	l.0 0.8	3.5	1.5	7.0	ns
	Bus to Bus									115
t _{PHL} , t _{PLH}	Propagation Delay	1.1	4.7	1.3	5.8	0.8	5.3	1.5	9.8	ns
	Clock to Bus	1.1	4.7	1.5	5.0	0.0	5.5	1.5	5.0	115
t _{PHL} , t _{PLH}	Propagation Delay	1.1	4.3	1.3	5.4	0.8	4.9	1.5	9.8	ns
	LE to Bus	1.1								115
t _{PZL} , t _{PZH}	Output Enable Time	1.1	4.3	1.3	5.4	0.8	4.9	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.1	4.2	1.3	4.7	0.8	4.2	1.5	7.6	ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns
t _S	Setup Time	1.5		1.5		1.5		2.5		ns
t _H	Hold Time	1.0		1.0		1.0	1	1.0	1	ns

Capacitance

Symbol	Parameter		Conditions	T _A = +25°C		Units
Symbol	Faiameter		Conditions	v _{cc}	Typical	Units
C _{IN}	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 50 pF	3.3	20	pF
				2.5	20	р

74ALVC16500

www.fairchildsemi.com

www.fairchildsemi.com

6

⁷⁴ALVC16500 Low Voltage 18-Bit Universal Bus Transceivers with 3.6V Tolerant Inputs and Outputs