## Onsemi

## Half Bridge Gate Driver (Isolated High & **Non-Isolated Low)** NCD57200

The NCD57200 is a high voltage gate driver with one non-isolated low side gate driver and one galvanically isolated high or low side gate driver. It can directly drive two IGBTs in a half bridge configuration. Isolated high side driver can be powered with an isolated power supply or with Bootstrap technique from the low side power supply.

The galvanic isolation for the high side gate driver guarantees reliable switching in high power applications for IGBTs that operate up to 800 V, at high dv/dt. The optimized output stages provide a mean of reducing IGBT losses. Its features include two independent inputs with deadtime and interlock, accurate asymmetric UVLOs, and short and matched propagation delays. The NCD57200 operates with its  $V_{DD}/V_{BS}$  up to 20 V.

#### Features

- High Peak Output Current (+1.9 A/-2.3 A)
- Low Output Voltage Drop for Enhanced IGBT Conduction
- Floating Channel for Bootstrap Operation up to +800 V
- CMTI up to 100 kV/µs
- Reliable Operation for V<sub>S</sub> Negative Swing to -800 V
- VDD & VBS Supply Range up to 20 V
- 3.3 V, 5 V, and 15 V Logic Input
- Asymmetric Under Voltage Lockout Thresholds for High Side and Low Side
- Matched Propagation Delay 90 ns
- Built- in 20 ns Minimum Pulse Width Filter (or Input Noise Filter)
- Built- in 340 ns Dead- Time and High and Low Inputs Interlock
- Non- Inverting Output Signal
- This Device is Pb-Free, Halogen Free/BFR Free and is RoHS Compliant

#### **Typical Applications**

- Fans, Pumps
- · Home Appliances
- Consumer Electronics
- · General Purpose Half Bridge Applications





А

L

Y

W

= Work Week = Pb- Free Package

#### **PIN CONNECTIONS**



#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 15 of this data sheet.



Figure 1. Simplified Block Diagram



Figure 2. Simplified Application Schematics

#### Table 1. FUNCTION DESCRIPTION

| Pin Name        | No. | I/O   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>DD</sub> | 1   | Power | Low side and main power supply. A good quality bypassing capacitor is required from this pin to GND and should be placed close to the pins for best results. The under voltage lockout (UVLO) circuit enables the device to operate at power on when a typical supply voltage higher than $V_{UVLO1-OUT-ON}$ is present. Please see Figure 5 for more details. A filter time $t_{UVF1}$ helps to suppress noise on $V_{DD}$ pin.                                   |
| HIN             | 2   | I     | High side non-inverting gate driver input. It has an equivalent pull- down resistor of 125 k $\Omega$ to ensure that output is low in the absence of an input signal. A minimum positive or negative going pulse width is required at HIN before HO reacts. It adopts 3.3 V logic signal thresholds for input voltage up to V <sub>DD</sub> . There is deadtime and interlocking logic between HIN and LIN.                                                        |
| LIN             | 3   | I     | Low side non-inverting gate driver input. It has an equivalent pull- down resistor of 125 k $\Omega$ to ensure that output is low in the absence of an input signal. A minimum positive or negative going pulse width is required at LIN before LO reacts.<br>It adopts 3.3 V logic signal thresholds for input voltage up to V <sub>DD</sub> .<br>There is deadtime and interlocking logic between HIN and LIN.                                                   |
| GND             | 4   | Power | Logic ground and low side driver return.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LO              | 5   | 0     | Low side driver output that provides the appropriate drive voltage and source/<br>sink current to the IGBT gate. LO is actively pulled low during startup and under<br>UVLO1 condition. There is deadtime and interlocking logic to prevent unintended<br>HO and LO cross conduction.                                                                                                                                                                              |
| Vs              | 6   | Power | Bootstrap return or high side floating supply offset.                                                                                                                                                                                                                                                                                                                                                                                                              |
| НО              | 7   | 0     | Galvanically isolated high side driver output that provides the appropriate drive voltage and source/sink current to the IGBT gate. HO is actively pulled low during startup and under UVLOx condition. There is deadtime and interlocking logic to prevent unintended HO and LO cross conduction.                                                                                                                                                                 |
| VB              | 8   | Power | Bootstrap or high side floating power supply. A good quality bypassing capacitor is required from this pin to V <sub>S</sub> and should be placed close to the pins for best results.<br>The under voltage lockout (UVLO) circuit enables the device to operate at power on when a typical supply voltage higher than $V_{UVLO2-OUT-ON}$ is present. Please see Figure 5 for more details. A filter time $t_{UVF2}$ helps to suppress noise on V <sub>B</sub> pin. |

#### Table 2. SAFETY AND INSULATION RATINGS

| Symbol                | Parameter                                                         |                         | Min             | Тур | Max | Unit            |
|-----------------------|-------------------------------------------------------------------|-------------------------|-----------------|-----|-----|-----------------|
|                       | Installation Classifications per DIN VDE 0110/1.89                | < 150 V <sub>RMS</sub>  | -               | -   | -   |                 |
|                       | Table 1 Rated Mains Voltage                                       | < 300 V <sub>RMS</sub>  | -               | -   | -   |                 |
|                       |                                                                   | < 450 V <sub>RMS</sub>  | -               | -   | -   |                 |
|                       |                                                                   | < 600 V <sub>RMS</sub>  |                 | -   | -   |                 |
|                       |                                                                   | < 1000 V <sub>RMS</sub> | -               | -   | -   |                 |
| CTI                   | Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)          |                         | 600             | -   | -   |                 |
| V <sub>IORM</sub>     | Maximum Working Insulation Voltage                                |                         | 800             | -   | -   | V <sub>PK</sub> |
| E <sub>CR</sub>       | External Creepage                                                 |                         | 4.0             | -   | -   | mm              |
| E <sub>CL</sub>       | External Clearance                                                |                         | 4.0             | -   | -   | mm              |
| DTI                   | Insulation Thickness                                              |                         | 8.65            | -   | -   | μm              |
| T <sub>Case</sub>     | Safety Limit Values – Maximum Values in Failure; Case Temperature |                         | 150             | -   | -   | °C              |
| P <sub>S,INPUT</sub>  | Safety Limit Values – Maximum Values in Failure; Input Power      |                         | 75              | -   | -   | mW              |
| P <sub>S,OUTPUT</sub> | Safety Limit Values – Maximum Values in Failure; Output Power     |                         | 1335            | -   | -   | mW              |
| R <sub>IO</sub>       | Insulation Resistance at TS, $V_{IO}$ = 500 V                     |                         | 10 <sup>9</sup> | -   | -   | Ω               |

| Table 3. ABSOLUTE MAXIMUM RATINGS | Note 1) Over | operating free-air t | emperature range unless otherwise noted |
|-----------------------------------|--------------|----------------------|-----------------------------------------|
|-----------------------------------|--------------|----------------------|-----------------------------------------|

| Parameter                                          | Symbol              | Minimum             | Maximum              | Unit |
|----------------------------------------------------|---------------------|---------------------|----------------------|------|
| High-Side Offset Voltage (see Figure 2)            | V <sub>S</sub>      | - 900               | 900                  | V    |
| High-Side Supply Voltage (see Figure 2)            | V <sub>B</sub>      | - 900               | 900                  | V    |
| Low-Side Supply Voltage                            | V <sub>DD</sub>     | - 0.3               | 25                   | V    |
| High- Side Floating Supply Voltage                 | V <sub>BS</sub>     | - 0.3               | 25                   | V    |
| High- Side Output Voltage (HO) (see Figure 2)      | V <sub>HO</sub>     | V <sub>S</sub> -0.3 | V <sub>BS</sub> +0.3 | V    |
| Low-Side Output Voltage (LO)                       | V <sub>LO</sub>     | - 0.3               | V <sub>DD</sub> +0.3 | V    |
| Logic Input Voltage (HIN, LIN)                     | V <sub>IN</sub>     | - 0.3               | V <sub>DD</sub> +0.3 | V    |
| Allowable Offset Voltage Slew Rate (see Figure 32) | dV <sub>S</sub> /dt |                     | ±100                 | V/ns |
| Maximum Junction Temperature                       | TJ(max)             | - 40                | 150                  | °C   |
| Storage Temperature Range                          | TSTG                | - 65                | 150                  | °C   |
| ESD Capability, Human Body Model (Note 2)          | ESDHBM              |                     | ±4                   | kV   |
| ESD Capability, Charged Device Model (Note 2)      | ESDCDM              |                     | ±2                   | kV   |
| Moisture Sensitivity Level                         | MSL                 |                     | 1                    | -    |
| Lead Temperature Soldering Reflow                  | TSLD                |                     | 260                  | °C   |
| (SMD Styles Only), Pb-Free Versions (Note 3)       |                     |                     |                      |      |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

 This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC- Q100- 002 (EIA/JESD22- A114).

ESD Charged Device Model tested per AEC-Q100-011 (EIA/JESD22-C101).

Latchup Current Maximum Rating: ≤ 100 mA per JEDEC standard: JESD78, 125°C.

3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **Table 4. THERMAL CHARACTERISTICS**

| Parameter                                                                                | Symbol | Value | Unit |
|------------------------------------------------------------------------------------------|--------|-------|------|
| Thermal Characteristics, SOIC-8 (Note 4)<br>Thermal Resistance, Junction-to-Air (Note 5) | RθJA   | 167   | °C/W |

4. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

5. Values based on copper area of 100 mm<sup>2</sup> (or 0.16 in<sup>2</sup>) of 1 oz copper thickness and FR4 PCB substrate.

#### Table 5. RECOMMENDED OPERATING RANGES (Note 6)

| Parameter                                    | Symbol          | Min                   | Мах                | Unit |
|----------------------------------------------|-----------------|-----------------------|--------------------|------|
| High-Side Floating Supply Voltage            | V <sub>BS</sub> | V <sub>S</sub> +UVLO2 | V <sub>S</sub> +20 | V    |
| High-Side Offset Voltage (see Figure 2)      | V <sub>S</sub>  | - 800                 | 800                | V    |
| High-Side Output Voltage (HO) (see Figure 2) | V <sub>HO</sub> | VS                    | V <sub>BS</sub>    | V    |
| Low-Side Output Voltage (LO)                 | V <sub>LO</sub> | GND                   | V <sub>DD</sub>    | V    |
| Logic Input Voltage (HIN, LIN)               | V <sub>IN</sub> | GND                   | V <sub>DD</sub>    | V    |
| Low-Side Supply Voltage                      | V <sub>DD</sub> | UVLO1                 | 20                 | V    |
| Ambient Temperature                          | T <sub>A</sub>  | - 40                  | +125               | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

Table 6. ELECTRICAL CHARACTERISTICS  $V_{DD} = V_{BS} = 15 V.$ For typical values  $T_A = 25^{\circ}C$ , for min/max values,  $T_A$  is the operating ambient temperature range that applies, unless otherwise noted.

| Parameter                                                            | Test Conditions                                                                                                                                     | Symbol                                         | Min  | Тур  | Max        | Unit |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|------|------------|------|
| VOLTAGE SUPPLY                                                       | •                                                                                                                                                   |                                                | -    |      |            |      |
| V <sub>BS</sub> Supply Under Voltage<br>Output Enabled               |                                                                                                                                                     | V <sub>UVLO2</sub> - OUT<br>- ON               | 11   | 11.5 | 12         | V    |
| V <sub>BS</sub> Supply Under Voltage<br>Output Disabled              |                                                                                                                                                     | V <sub>UVLO2-OUT</sub><br>- OFF                | 10   | 10.5 | 11         | V    |
| V <sub>BS</sub> Supply Voltage Output<br>Enabled/Disabled Hysteresis |                                                                                                                                                     | V <sub>UVLO2-HYST</sub>                        | 0.5  | 1.0  | 1.2        | V    |
| V <sub>DD</sub> Supply Under Voltage<br>Output Enabled               |                                                                                                                                                     | V <sub>UVLO1-OUT</sub><br>- ON                 | 12   | 12.5 | 13         | V    |
| V <sub>DD</sub> Supply Under Voltage<br>Output Disabled              |                                                                                                                                                     | V <sub>UVLO1-OUT</sub><br>-OFF                 | 11   | 11.5 | 12         | V    |
| V <sub>DD</sub> Supply Voltage Output<br>Enabled/Disabled Hysteresis |                                                                                                                                                     | V <sub>UVLO1-HYST</sub>                        | 0.5  | 1.0  | 1.2        | V    |
| Leakage Current Between $\mathrm{V}_{\mathrm{S}}$ and GND            | $V_{S} = \pm 800 \text{ V}, T_{A} = 25^{\circ}\text{C}$<br>$V_{S} = \pm 800 \text{ V}, T_{A} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ | I <sub>HV_LEAK1</sub><br>I <sub>HV_LEAK2</sub> |      | 20   | 200<br>600 | nA   |
| Quiescent Current V <sub>BS</sub> Supply<br>(V <sub>B</sub> Only)    | HO = Low                                                                                                                                            | I <sub>QBS1</sub>                              |      | 260  | 325        | μA   |
| Quiescent Current V <sub>BS</sub> Supply<br>(V <sub>B</sub> Only)    | HO = High                                                                                                                                           | I <sub>QBS2</sub>                              |      | 330  | 440        | μA   |
| Quiescent Current V <sub>DD</sub> Supply<br>(V <sub>DD</sub> Only)   | V <sub>LIN</sub> = Float, V <sub>HIN</sub> = 0 V,                                                                                                   | I <sub>QDD1</sub>                              |      | 380  | 440        | μΑ   |
| Quiescent Current V <sub>DD</sub> Supply<br>(V <sub>DD</sub> Only)   | V <sub>LIN</sub> = 3.3 V, V <sub>HIN</sub> = 0 V,                                                                                                   | I <sub>QDD2</sub>                              |      | 440  | 500        | μA   |
| Quiescent Current V <sub>DD</sub> Supply<br>(V <sub>DD</sub> Only)   | $V_{LIN} = 0 V$ , $V_{HIN} = 3.3 V$ ,                                                                                                               | I <sub>QDD3</sub>                              |      | 2.4  | 3          | mA   |
| LOGIC INPUT                                                          | ł                                                                                                                                                   | _                                              |      |      |            |      |
| Low Level Input Voltage                                              |                                                                                                                                                     | V <sub>IL</sub>                                |      |      | 0.9        | V    |
| High Level Input Voltage                                             |                                                                                                                                                     | V <sub>IH</sub>                                | 2.4  |      |            | V    |
| Logic "1" Input Bias Current                                         | V <sub>LIN</sub> = 3.3 V, V <sub>HIN</sub> = 3.3 V                                                                                                  | I <sub>LIN1+</sub> , I <sub>HIN1+</sub>        |      | 25   | 50         | μA   |
| Logic "1" Input Bias Current                                         | $\label{eq:VLIN} \begin{array}{l} V_{LIN} = 20 \; V, \; V_{HIN} = 20 \; V, \\ V_{DD} = V_{BS} = 20 \; V \end{array}$                                | I <sub>LIN2+</sub> , I <sub>HIN2+</sub>        |      | 100  | 150        | μΑ   |
| Logic "0" Input Bias Current                                         | $V_{LIN} = 0 V, V_{HIN} = 0 V$                                                                                                                      | I <sub>LIN-</sub> , I <sub>HIN-</sub>          |      | 40   | 100        | nA   |
| DRIVER OUTPUT                                                        |                                                                                                                                                     |                                                | -    |      |            |      |
| Output Low State                                                     | $I_{SINK}$ = 200 mA, $T_A$ = 25°C                                                                                                                   | V <sub>OL1</sub>                               |      | 0.2  | 0.3        | V    |
|                                                                      | $I_{SINK} = 200 \text{ mA},$<br>$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$                                                         | V <sub>OL2</sub>                               |      |      | 0.5        |      |
| Output High State                                                    | $I_{SOURCE} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$                                                                                             | V <sub>OH1</sub>                               | 14.4 | 14.5 |            | V    |
|                                                                      | $I_{SOURCE} = 200 \text{ mA},$<br>$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$                                                       | V <sub>OH2</sub>                               | 14   |      |            |      |
| Peak Driver Current, Sink                                            | V <sub>HO</sub> = V <sub>LO</sub> = 15 V                                                                                                            | I <sub>PK-SNK1</sub>                           |      | 2.3  |            | А    |
| (Note 7)                                                             | V <sub>HO</sub> = V <sub>LO</sub> = 9 V<br>(near Miller Plateau)                                                                                    | I <sub>PK-SNK2</sub>                           |      | 2.1  |            |      |
| Peak Driver Current, Source                                          | $V_{HO} = V_{LO} = 0 V$                                                                                                                             | I <sub>PK-SRC1</sub>                           |      | 1.9  |            | А    |
| (Note 7)                                                             | V <sub>HO</sub> = V <sub>LO</sub> = 9 V<br>(near Miller Plateau)                                                                                    | I <sub>PK-SRC2</sub>                           |      | 1.5  |            |      |

#### Table 6. ELECTRICAL CHARACTERISTICS V<sub>DD</sub> = V<sub>BS</sub> = 15 V.

For typical values  $T_A = 25^{\circ}C$ , for min/max values,  $T_A$  is the operating ambient temperature range that applies, unless otherwise noted.

| Parameter                                                                                      | Test Conditions                                                                      | Symbol                                | Min  | Тур  | Max | Unit |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|------|------|-----|------|
| IGBT SHORT CIRCUIT CLAMPING                                                                    |                                                                                      |                                       |      |      |     |      |
| Clamping Voltage<br>(V <sub>HO</sub> – V <sub>B</sub> ) / (V <sub>LO</sub> – V <sub>DD</sub> ) | $I_{HO}$ = 100 mA, $I_{LO}$ = 100 mA<br>(pulse test, t <sub>CLPmax</sub> = 10 µs)    | V <sub>CLAMP-OUT</sub>                |      | 0.8  | 1.3 | V    |
| DYNAMIC CHARACTERISTIC                                                                         | •                                                                                    |                                       |      | -    |     |      |
| HO High Propagation Delay                                                                      | $C_{LOAD}$ = 1 nF, V <sub>IH</sub> to 10% of Output<br>Change for PW > 150 ns        | t <sub>PD-ON-H</sub>                  | 50   | 90   | 110 | ns   |
| HO Low Propagation Delay                                                                       | $C_{LOAD}$ = 1 nF, V <sub>IL</sub> to 90% of Output<br>Change for PW > 150 ns        | t <sub>PD-OFF-H</sub>                 | 50   | 90   | 110 | ns   |
| Propagation Delay Distortion(HS)<br>(= t <sub>PD-ON-H</sub> - t <sub>PD-OFF-H</sub> )          | PW >150 ns                                                                           | tDISTORT-H                            | - 25 | 0    | 25  | ns   |
| LO High Propagation Delay                                                                      | C <sub>LOAD</sub> = 1 nF, V <sub>IH</sub> to 10% of Output<br>Change for PW > 150 ns | t <sub>PD-ON-L</sub>                  | 50   | 90   | 110 | ns   |
| LO Low Propagation Delay                                                                       | C <sub>LOAD</sub> = 1 nF, VIL to 90% of Output<br>Change for PW > 150 ns             | <sup>t</sup> PD-OFF-L                 | 50   | 90   | 110 | ns   |
| Propagation Delay Distortion(LS)<br>(= $t_{PD-ON-L} - t_{PD-OFF-L}$ )                          | PW >150 ns                                                                           | t <sub>DISTORT-L</sub>                | - 25 | 0    | 25  | ns   |
| High Propagation Delay Distortion between High and Low Sides                                   | PW > 150 ns                                                                          | tDISTORT-HL-H                         | - 25 | 0    | 25  | ns   |
| Low Propagation Delay Distortion between High and Low Sides                                    | PW > 150 ns                                                                          | t <sub>DISTORT-HL-L</sub>             | - 25 | 0    | 25  | ns   |
| Rise Time (HO) (see Figure 3)                                                                  | C <sub>LOAD</sub> = 1 nF,<br>10% to 90% of Output Change                             | t <sub>RISE-H</sub>                   |      | 13   |     | ns   |
| Fall Time (HO) (see Figure 3)                                                                  | C <sub>LOAD</sub> = 1 nF,<br>90% to 10% of Output Change                             | t <sub>FALL- H</sub>                  |      | 8    |     | ns   |
| Rise Time (LO) (see Figure 3)                                                                  | C <sub>LOAD</sub> = 1 nF,<br>10% to 90% of Output Change                             | t <sub>RISE-L</sub>                   |      | 13   |     | ns   |
| Fall Time (LO) (see Figure 3)                                                                  | C <sub>LOAD</sub> = 1 nF,<br>90% to 10% of Output Change                             | t <sub>FALL</sub> -L                  |      | 8    |     | ns   |
| Deadtime, HO Delays (see Figure 6)                                                             | V <sub>LIN/HIN</sub> = 0 V and 3.3 V                                                 | t <sub>DT1</sub>                      |      | 340  |     | ns   |
| Deadtime, LO Delays (see Figure 6)                                                             | $V_{\text{LIN/HIN}} = 0 \text{ V} \text{ and } 3.3 \text{ V}$                        | t <sub>DT2</sub>                      |      | 350  |     | ns   |
| Deadtime Matching                                                                              |                                                                                      | t <sub>MDT</sub>                      |      | 10   |     | ns   |
| Minimum Pulse Width Filtering Time (see Figure 3)                                              | $T_A = 25^{\circ}C$                                                                  | t <sub>MIN1</sub> , t <sub>MIN2</sub> | 10   |      | 40  | ns   |
| UVLO Fall Delay (HO and LO)                                                                    |                                                                                      | t <sub>UVF1</sub> , t <sub>UVF2</sub> |      | 1300 |     | ns   |
| UVLO Rise Delay (HO and LO)                                                                    |                                                                                      | t <sub>UVR1</sub> , t <sub>UVR2</sub> |      | 1100 |     | ns   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Values based on design and/or characterization.



#### Figure 5. UVLO



Figure 6. Deadtime, Interlock and Output Minimum Pulse Width



Figure 7. Input Circuit

#### **TYPICAL CHARACTERISTICS**



#### TYPICAL CHARACTERISTICS (continued)



#### TYPICAL CHARACTERISTICS (continued)



#### TYPICAL CHARACTERISTICS (continued)



Frequency (Duty Cycle 50%)

#### Under Voltage Lockout (UVLO)

UVLO ensures correct switching of IGBT connected to the driver output.

- The IGBT is turned- off, if the supply  $V_{DD}$  drops below  $V_{UVLO1-OUT-OFF}$  or  $V_{BS}$  drops below VUVLO2-OUT-OFF
- The driver output does not start to react to the input signal on HIN or LIN until the V<sub>DD</sub> or V<sub>BS</sub> rises above the V<sub>UVLOX-OUT-ON</sub>

#### Power Supply (V<sub>DD</sub>, V<sub>BS</sub>)

NCD57200 is designed to support unipolar power supply on both individual channels.

For reliable high output current suitable external power capacitors are required. Parallel combination of 100 nF + 4.7 µF ceramic capacitors is optimal for a wide range of applications using IGBT. For reliable driving of IGBT modules (containing several parallel IGBTs) a higher capacitance is required (typically  $100 \text{ nF} + 10 \mu\text{F}$ ). Capacitors should be as close as possible to the driver's power pins.

Power supply of isolated (HO) channel can be provided by an external DC power supply or Bootstrap circuit.







#### Signal Inputs (HIN, LIN)

Inputs of NCD57200 are active high. Outputs are in phase with inputs signals respecting internal logic (see Figure 5, 6, 7).

WARNING: When the application uses an independent or separate power supply for the control unit on the input side of the driver, all inputs should be protected by a serial resistor (In case of a power failure of the driver, the driver may be damaged due to overloading of the input protection circuits).

#### Common Mode Transient Immunity (CMTI)



Figure 32. CMTI Test Setup

(Test Conditions: HV PULSE =  $\pm$ 900 V, dV/dt = 1-100 V/ns, V<sub>DD</sub> = 15 V, V<sub>B</sub> = 15 V)



Figure 33. Recommended Layout



Figure 34. Recommended Layer Stack

#### **ORDERING INFORMATION**

| Device       | Package          | Shipping <sup>†</sup> |
|--------------|------------------|-----------------------|
| NCD57200DR2G | SOIC-8 (Pb-Free) | 2500 / Tape & Reel    |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# onsemí



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### STYLES ON PAGE 2

| DOCUMENT NUMBER:                                                                     | 98ASB42564B                                                                                                | Electronic versions are uncontrolled except when accessed directly from the Document Repository<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.                                                                                                                    |                           |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| DESCRIPTION: SOIC-8 NB PAGE 1 OF 2                                                   |                                                                                                            |                                                                                                                                                                                                                                                                                                       |                           |  |  |  |
| the right to make changes without furth<br>purpose, nor does <b>onsemi</b> assume ar | er notice to any products herein. <b>onsemi</b> make<br>ny liability arising out of the application or use | LLC dba <b>onsemi</b> or its subsidiaries in the United States and/or other courses no warranty, representation or guarantee regarding the suitability of its proof any product or circuit, and specifically disclaims any and all liability, incle under its patent rights nor the rights of others. | oducts for any particular |  |  |  |

#### SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

#### DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW\_TO\_GND 2. DASIC OFF DASIC\_SW\_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

| DOCUMENT NUMBER: | 98ASB42564B | B42564B Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| DESCRIPTION:     | SOIC-8 NB   |                                                                                                                                                                                           | PAGE 2 OF 2 |  |  |  |  |
|                  |             |                                                                                                                                                                                           |             |  |  |  |  |

onsem and of isor in are trademarks or semiconductor compension instructions, the do onsem or its subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced stat purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative