GLF2310, GLF2311, GLF2313, GLF2321

High Precision Current Limit Power Switch Product Specification

DESCRIPTION

The GLF2310, GLF2311, GLF2313 and GLF2321 are an advanced technology fully integrated power switch for applications required for precision output current limiting. The GLF2310, GLF2311, GLF2313 and GLF2321 feature also various protection functions such as under voltage lockout, true reverse current blocking (TRCB), short circuit protection, and thermal shutdown.

The GLF2310, GLF2311. GLF2313 and GLF2321 provide a built-in output voltage slew rate control to limit the inrush current and voltage surges. The FLGB output pin can be used to send a signal of fault events to the system controller. The integrated thermal shutdown (TSD) insures complete protection for the switch during output current limit and short The GLF2310, GLF2311, circuit conditions. GLF2313 and GLF2321 are an ideal switch for USB power supply.

FEATURES

- Input Range: 2.5 V to 5.5 V
- Programmable Output Constant Current Limit: GLF2310A, GLF2311A
 - Range: 40 mA ~ 2.2 A
- Fixed Output Constant Current Limit:
 - o GLF2311B, GLF2313B: 2.0 A Min
 - o GLF2321B: 1.5 A Min
- Low R_{ON}: 56 mΩ Typ. @ 5.0 V_{IN}
- Ultra-Low I_Q: 20 uA Typ. @ 5.0 V_IN
- Ultra-Low I_{SD} : 50 nA Typ. @ 5.0 V_{IN}
- Under Voltage Lockout Protection
- Output Voltage Slew Rate Controlled
- True Reverse Current Blocking Protection
- Short Circuit Protection
- Deglitched Fault Flag Indication
- Integrated Output Discharge Switch
 - o GLF2311x, GLF2313x, GLF2321x
- Thermal Shutdown Protection
- IEC 62368-1:2018 CB Certification No. FI-52066

APPLICATIONS

- USB ports
- Notebooks
- Set-Top Boxes
- Telecom Systems

PACKAGE

DEVICE ORDERING INFORMATION

Part Number	Top Mark	Output Current Limit I⊔M	Output Discharge	Fault Flag FLGB	EN Activity	Package
GLF2310A-T1G7	FA		NA	NA		SOT23-5L
GLF2311A-T1G7	FB	Programmable	85 Ω	NA		SOT23-5L
GLF2310A-T2G7	HA	Up to 2.1 A	NA	Yes	High	SOT23-6L
GLF2311A-T2G7	HB		85 Ω	Yes		SOT23-6L
GLF2311B-T1G7	GB	Fixed 2.0 A Min	85 Ω	Yes		SOT23-5L
GLF2313B-T1G7	KD	Fixed 2.0 A Min	85 Ω	Yes	Low	SOT23-5L
GLF2321B-T1G7	KB	Fixed 1.5 A Min	85 Ω	Yes	High	SOT23-5L

APPLICATION DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

GLF2310A-T2G7, GLF2311A-T2G7

GLF2311B-T1G7, GLF2313B-T1G7, GLF2321B-T1G7

Figure 2. Functional Block Diagram

PIN DEFINITION

High Precision Current Limit Power Switch

PIN CONFIGURATION

GLF2310A-T1G7, GLF2311A-T1G7

Pin #	Name	Description
1	VOUT	Switch output
2	GND	Ground
3	ILIM	Programmable current limit. Do not leave this pin floating.
4	EN	Active high switch output enables to control the switch
5	VIN	Switch Input. Supply voltage for IC

GLF2310A-T2G7, GLF2311A-T2G7

Pin #	Name	Description
1	Vout	Switch output
2	GND	Ground
3	FLGB	Flag pin goes low to indicate OCP, SC, RCB, and TSD fault conditions
4	EN	Active high switch output enables to control the switch
5	ILIM	Programmable current limit Do not leave this pin floating.
6	VIN	Switch Input. Supply voltage for IC

GLF2311B-T1G7, GLF2313B-T1G7 GLF2321B-T1G7

	Pin #	Name	Description
	1	Vout	Switch Output
1	2	GND	Ground
	3	FLGB	Flag pin goes low to indicate OCP, SC, RCB, and TSD fault conditions
	4	EN	Active high switch output enables to control the switch Active low: GLF2313B
	5 VIN		Switch Input. Supply voltage for IC

ILIM 3

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	Min.	Max.	Unit	
V _{IN}	V _{IN} , V _{OUT} , V _{EN} to GND		- 0.3	6	V
IOUT	DC Continuous Current at T _A = 25°C			2.6	А
T _{STG}	Storage Junction Temperature	- 65	150	°C	
TA	Operating Temperature Range	- 40	105	°C	
θ _{JA}	Thermal Resistance, Junction to Ambient			180	°C/W
FOD	Electrostatio Discharge Conschility	Human Body Model, JESD22-A114	8		
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		kV

RECOMMENDED OPERATING CONDITIONS

VIN Supply Voltage 2.5 5.5 V T _A Ambient Operating Temperature -40 +85 °C	Symbol	Parameter	Min.	Max.	Unit
TAAmbient Operating Temperature-40+85°C	V _{IN}	Supply Voltage	2.5	5.5	V
	TA	Ambient Operating Temperature	-40	+85	°C

 $\mathsf{P} \cap \mathsf{W}$

ELECTRICAL CHARACTERISTICS

Values are at V_{IN} = 5.0 V and T_A = 25°C. Unless otherwise noted

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units	
Basic Oper	ation							
lα	Quiescent Current	V _{EN} = Enable, I _{OUT} = 0 mA			20	30	μA	
I _{SD}	Shutdown Current	V _{EN} = Disable, I _{OUT} = 0 mA		1	50	100	nA	
		$\lambda = 50 \lambda = 500 \text{ m}$	Ta= 25 °C		56	70		
P	On Desistance	V _{IN} = 5.0 V, I _{OUT} = 500 mA	Ta= 85 °C ⁽¹⁾		64			
R _{ON}	On-Resistance		Ta= 25°C		64	80	mΩ	
		V _{IN} =3.3 V, I _{OUT} = 500 mA	Ta= 85 °C ⁽¹⁾		74			
R _{DSC}	Output Discharge Resistance	V _{EN} = Low , I _{FORCE} = 10 mA GLF2311x, GLF2313x, GLF2321x			300		Ω	
VIH	EN Input Logic High Voltage	V _{IN} = 2.5 V to 5.5 V		1.2			V	
VIL	EN Input Logic Low Voltage	V _{IN} = 2.5 V to 5.5 V				0.6	V	
R _{EN}	EN pull down resistance	Internal Resistance			10	13	MΩ	
R _{EN}	EN pull up resistance	Internal Resistance, GLF2	313B only		10	13	MΩ	
I _{EN}	EN Source or Sink Current	V _{EN} = 5.5 V				0.6	μA	
V _{FLGB}	FLGB Output Low Voltage	I _{FLGB} = 0.5 mA				180	mV	
I _{FLGB}	FLGB Output High Leakage	V _{FLGB} = 5.5 V			6		nA	
		Delay time for assertion at	over current		8		ms	
t _{FLAG}	FLGB Output Delay Time ⁽¹⁾	Delay time for assertion at short circuit and thermal shutdown conditions			100		μs	

GLF2310, GLF2311, GLF2313, GLF2321 High Precision Current Limit Power Switch

Values are at V_{IN} = 5.0 V and T_A = 25°C. Unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Protection							
M	Linder Voltage Leekout Voltage	Input Rising		2.3		V	
V _{UVLO}	Under Voltage Lockout Voltage	Input Falling		2.2		V	
		R _{LIM} = 1.3 kΩ, GLF231xA ⁽¹⁾		2.2			
I _{LIM}	Over Current Limit	GLF231xB	2.0	2.2	2.4	A	
		GLF2321B	1.5	1.8	2.0]	
		R _{LIM} = 1.3 kΩ, GLF231xA		6.6			
Isc	Short Circuit ⁽¹⁾	GLF231xB		6.6		A	
		GLF2321B		5.3			
t _{oc}	Over Current limit Protection Delay Time ⁽¹⁾	R_{LIM} = 1.3 kΩ, R_{OUT} = 2 Ω, See Figure 20		84		μs	
t _{sc}	Short Circuit Protection Delay Time ⁽¹⁾	R_{LIM} = 1.3 kΩ, R_{OUT} = 0.2 Ω, See Figure 20		8		μs	
	Reverse Current Blocking Protection Trip Voltage	V _{OUT} - V _{IN}	20	40	105		
V _{RCB}	Reverse Current Blocking Protection Release Voltage	VIN - VOUT	12	25	80	mV	
I _{RCB}	Reverse Current Blocking Protection Leakage	$(V_{OUT} - V_{IN}) > V_{RCB}$			1	uA	
TSD	Thermal Shutdown	20 °C Hysteresis ⁽¹⁾		140		°C	
Switching C	Characteristics (2)	GRATEDP	0	ΛI	- R		
t _{dON}	Turn-On Delay			160			
t _R	V _{OUT} Rise Time	R _{OUT} = 150 Ω, C _{OUT} =1.0 μF		600		1	
t _{dOFF}	Turn-Off Delay	R _{OUT} =150 Ω, C _{OUT} =1.0 μF		15			
t⊧	Vout Fall Time	GLF2310x		270		μs	
t _{dOFF}	Turn-Off Delay	Rout=150 Ω, Cout=1.0 μF	1	15		1	
t⊧	V _{OUT} Fall Time	GLF2311x, GLF2313x, GLF2321x		200		1	

Notes:

By design; characterized; not production tested.
Switching Timing Diagram

Figure 4. Switching Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Shutdown Current vs. Temperature

Figure 9. Over Current Limit vs. Temperature, GLF2321B

Figure 8. Over Current Limit vs. Temperature, GLF231xB

Figure 10. EN Input Logic High Threshold

Figure 11. EN Input Logic Low Threshold

Figure 11. Turn-On Response V_{IN}=5.0 V, C_{IN}=1.0 uF, C_{OUT}=1.0 uF, R_L=150 Ω

Figure 13. Current Limit Response, GLF232xA V_{IN}=5.0 V, C_{IN}=1.0 \ \mu\text{F}, C_{OUT}=1.0 \ \mu\text{F}, R_{LIM}=5 \ k\Omega

Figure 12. Turn-Off Response V_{IN}=5.0 V, C_{IN}=1.0 uF, C_{OUT}=1.0 uF, R_L=150 Ω

EN 2V/div

Figure 14. Short Circuit Response $V_{\text{IN}}{=}5.0~V,~C_{\text{IN}}{=}1.0~\mu\text{F},~C_{\text{OUT}}{=}1.0~\mu\text{F},~R_{\text{LIM}}{=}5~k\Omega,~R_{\text{L}}{=}0~\Omega$

200 us/div

Figure 15. Current Limit Response, GLF231xB V_IN=5.0 V, C_IN=1.0 $\mu F,$ C_OUT=1.0 $\mu F,$ RLIM=5 k Ω

Figure 16. Current Limit Response, GLF2321B VIN=5.0 V, CIN=1.0 μ F, COUT=1.0 μ F, RLIM=5 k Ω

Figure 19. Reverse Current Blocking Threshold $V_{\text{IN}}{=}3.3$ V, $V_{\text{OUT}}{=}Up$ to 3.4 V, $C_{\text{IN}}{=}1.0$ $\mu\text{F},$ $C_{\text{OUT}}{=}1.0$ μF

Figure 20. Reverse Current Blocking Release $V_{\text{IN}}{=}3.3$ V, $V_{\text{OUT}}{=}Up$ to 3.4 V, $C_{\text{IN}}{=}1.0$ $\mu\text{F},$ $C_{\text{OUT}}{=}1.0$ μF

APPLICATION INFORMATION

The GLF2310, GLF2311, GLF2313 and GLF2321 are an advanced technology fully integrated power switch for applications required for precision output current limiting. It features also various protection functions such as under voltage lockout, true reverse current blocking (TRCB), short circuit protection, and thermal shutdown.

Input and Output Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop. An output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

EN pin

The GLF2310, GLF2311, and GLF2321 can be activated by EN pin high and the GLF2313 can be enabled by low. Note that the EN pin has an internal pull-down or pull-up resistor to maintain a reliable status without EN signal applied from an external controller.

True Reverse Current Blocking

The GLF2310, GLF2311, GLF2313 and GLF2321 have a built-in reverse current blocking protection which always monitors the output voltage level regardless of the status of EN pin to check if it is greater than the input voltage. When the output voltage goes beyond the input voltage by 40 mV, that is the reverse current blocking protection trip voltage, the reverse current blocking function block turns off the switch. Note that some reverse current can occur until the V_{RCB} is triggered. The main switch will resume normal operation when the output voltage drops below the input source by the RCB protection release voltage.

Fault Flag Response

The output of the open drain FLGB pin goes active low for any of following fault conditions: output current limit, output short-circuit, reverse current blocking, or thermal shutdown. It is designed to avoid false FLGB reporting by using an internal 8 ms deglitch delay for the current limit condition and 100 µs delay for the short circuit and over temperature conditions. The FLGB output remains low until over-current or over-temperature condition is removed. When short circuit fault conditions occur, the device is latched-off and the FLGB output remains low. The FLGB signal is de-asserted once device power is cycled or the enable is toggled and the device resumes normal operation.

Current Limiting and Short Circuit Protection

When the GLF231x and GLF2321 are enabled, the current-limit circuitry starts monitoring the output current. When the load current reaches up to the over current protection threshold, the device clamps the output current to a constant current limit level. The preset constant current limits of GLF231xB and GLF2321B are 2.0 A and 1.5 A respectively. A constant output current limit level of GLF231xA can be programmed by an external resistor (R_{LIM}) between ILIM and GND. The 1% precision resistors are recommended. The R_{LIM} resistor traces should be as short as possible to reduce parasitic effects on the current-limit levels. The over temperature protection (OTP) turns off the device when the junction temperature exceeds 140 °C at the current limit condition. As the junction temperature cools down to 120 °C, the device is turned on again. The short circuit protection will take action immediately to shut down the device once a short circuit on the output node is detected. The device remains off until power is cycled or the EN pin is toggled.

2200

Current Limiting and Short Circuit Protection (continued)

PACKAGE OUTLINE

SOT23-5L

Size Mark	Min(mm)	Max(mm)	Size Mark	Min(mm)	Max(mm)
А	2.82	3.02	С	1.05	1.15
е	0.9	95 (BSC)	C1	0.03	0.15
b	0.28	0.45	C2	0.12	0.23
В	1.50	1,70	L	0.35	0.55
B1	2.60	3.00	θ	0°	8°

Size Size Min(mm) Max(mm) Min(mm) Max(mm) Mark Mark 2.82 3.02 С 1.05 1.15 A 0.95 (BSC) 0.03 0.15 C1 e 0.12 b 0.28 0.45 C2 0.23 В 1.50 1.70 0.35 0.55 T. 0° 8° **B1** 2.60 3.00 θ

TAPE AND REEL INFORMATION

REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

GL

F

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	A0	В0	К0	P1	w	Pin1
GLF2310A-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF2311A-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF2310A-T2G7	SOT23-6	6	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF2311A-T2G7	SOT23-6	6	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF2311B-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF2313B-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF2321B-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.