AKM

AK4122A 24-Bit 96kHz SRC with DIR

GENERAL DESCRIPTION

The AK4122A is a digital sample rate converter (SRC) with the digital audio receiver (DIR). The input sample rate ranges from 8kHz to 96kHz. The output sample rate is 32kHz, 44.1kHz, 48kHz or 96kHz. By using the AK4122A, the system can take very simple configuration because the AK4122A has an internal PLL and does not need any master clock at slave mode. Then the AK4122A is suitable for the application interfacing to different sample rates like Car Audio, DVD recorder, etc.

FEATURES

- 1. SRC
 - Asynchronous Sample Rate Converter
 - Input Sample Rate Range (fsi) : 8kHz ~ 96kHz
 - Output Sample Rate (fso) : 32kHz, 44.1kHz, 48kHz, 96kHz
 - Input to Output Sample Rate Ratio : 0.33 to 6
 - THD+N : -113dB
 - I/F format : MSB justified, LSB justified (16/24bit) and I²S compatible
 - Clock for Master mode : 256/384/512/768fs
 - SRC Bypass mode
 - Soft Mute Function
- 2. DIR
- 4-Channel Inputs Selector & 1-Channel Through Output
- AES3, IEC60958, S/PDIF, EIAJ CP1201 Compatible
- Low Jitter Analog PLL
- PLL Lock Range : 32kHz ~ 96kHz
- Auto detection
 - Non-PCM Bit Stream
 - DTS-CD Bit Stream
 - Validity Flag
 - Sampling Frequency (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz)
 - Unlock & Parity Error
 - DAT Start ID
- 40-bit Channel Status Buffer
- Burst Preamble bit Pc, Pd Buffer for Non-PCM bit streams
- Q-subcode Buffer for CD bit streams
- 3. 4-wire Serial µP Interface
- 4. Power Supply
 - AVDD: 3.0 ~ 3.6V (typ. 3.3V)
 - DVDD: 3.0 ~ 3.6V (typ. 3.3V)
- 5. Ta = −10 ~ 70°C
- 6. Package : 48pin LQFP

Block Diagram

Ordering Guide

AK4122AVQ	$-10 \sim +70^{\circ}\text{C}$	48pin LQFP (0.5mm pitch)
AKD4122A	Evaluation Board for Ak	X4122A

Pin Layout

PIN/FUNCTION

No.	Pin Name	I/O	Function
1	CDTI	Ι	Control Data Input Pin
2	CDTO	0	Control Data Output Pin
3	TST1	0	Test 1 Pin
4	INT2	0	Interrupt 2 Pin
5	TST2	0	Test 2 Pin
6	TST3	Ι	Test 3 Pin
6	1515	1	This pin should be connected to DVSS.
7	M/S2	Ι	Master / Slave Mode Pin for PORT2
/	101/32	1	"H" : Master mode, "L" : Slave Mode
8	M/S3	Ι	Master / Slave Mode Pin for PORT3
0	101/33	1	"H" : Master mode, "L" : Slave Mode
9	SMUTE	Ι	Soft Mute Pin
	SINCTE	1	"H" : Soft Mute, "L" : Normal Operation
10	TST4	I	Test 4 Pin
10	1511	1	This pin should be connected to AVSS.
11	TST5	Ι	Test 5 Pin
11	1015	1	This pin should be connected to AVSS.
			PLL Loop Filter Pin
12	FILT	0	$470\Omega\pm5\%$ resistor and 2.2μ F $\pm50\%$ ceramic capacitor in parallel with a
			2.2nF±50% ceramic capacitor should be connected to AVSS externally.
13	AVSS	-	Analog Ground Pin
14	AVDD	-	Analog Power Supply Pin, 3.0 ~ 3.6V
15	TST6	Ι	Test 6 Pin
10		-	This pin should be connected to AVSS.
16	RX1	Ι	Receiver Input 1 Pin with Amp for 0.2Vpp (Internal Biased Pin)
17	TST7	Ι	Test 7 Pin
17	1517	1	This pin should be connected to AVSS.
18	RX2	Ι	Receiver Input 2 Pin with Amp for 0.2Vpp (Internal Biased Pin)
19	TST8	Ι	Test 8 Pin
17	1516	1	This pin should be connected to AVSS.
20	RX3	Ι	Receiver Input 3 Pin with Amp for 0.2Vpp (Internal Biased Pin)
21	TST9	Ι	Test 9 Pin
21	1517	1	This pin should be connected to AVSS.
22	RX4	Ι	Receiver Input 4 Pin with Amp for 0.2Vpp (Internal Biased Pin)
23	TST10	Ι	Test 10 Pin
23	15110	1	This pin should be connected to AVSS.
24	TST11	0	Test 11 Pin

Note: All input pins except internal biased pins should not be left floating.

25	D		External Resistor Pin
25	R	-	$12k\Omega \pm 5\%$ resistor should be connected to AVSS externally.
26	AVSS	-	Analog Ground Pin
27	DDN	т	Power-Down Mode Pin
27	PDN	Ι	"H": Power up, "L": Power down reset and initializes the control register.
28	LRCK1	Ι	Input Channel Clock Pin
29	BICK1	Ι	Audio Serial Data Clock Pin
30	SDTI	Ι	Audio Serial Data Input Pin
31	DVSS	-	Digital Ground Pin
32	DVDD	-	Digital Power Supply Pin, 3.0 ~ 3.6V
33	MCLK2	Ι	Master Clock Input Pin
34	LRCK2	I/O	Input / Output Channel Clock Pin
35	BICK2	I/O	Audio Serial Data Clock Pin
36	SDTIO	I/O	Audio Serial Data Input / Output Pin
37	INT0	0	Interrupt 0 Pin
38	INT1	0	Interrupt 1 Pin
39	ТХ	0	Transmitter Output Pin
40	SDTO	0	Audio Serial Data Output Pin
41	BICK	I/O	Audio Serial Data Clock Pin
42	LRCK	I/O	Output Channel Clock Pin
43	OMCLK	Ι	Master Clock Input Pin
44	DVSS	-	Digital Ground Pin
45	DVDD	-	Digital Power Supply Pin, 3.0 ~ 3.6V
46	BVSS		Substrate Ground Pin
40	DV 35	-	This pin should be connected to AVSS.
47	CSN	Ι	Chip Select Pin
48	CCLK	Ι	Control Data Clock Pin

Note: All input pins except internal biased pins should not be left floating.

Handling of Unused pins

Classification	Pin Name	Setting
PORT1	BICK1, LRCK1, SDTI	These pins should be connected to DVSS.
	MCLK2	This pin should be connected to DVSS.
PORT2	BICK2, LRCK2	These pins should be connected to DVSS in slave mode or open in master mode.
	SDTIO	This pin should be connected to DVSS.
	M/S2	This pin should be connected to DVDD or DVSS.
	OMCLK	This pin should be connected to DVSS.
PORT3	BICK, LRCK	These pins should be connected to DVSS in slave mode or open in master mode.
	SDTO	This pin should be open.
	M/S3	This pin should be connected to DVDD or DVSS.
DIR	RX1, RX2, RX3, RX4	These pins should be open.
DIK	INT0, INT1, INT2, TX	These pins should be open.
Control PORT	CCLK, CDTI, CSN CDTO	These pins should be connected to DVSS. This pin should be open.
Other	SMUTE	This pin should be connected to DVSS.
	TST1, TST2, TST11	These pins should be open.
TEST	TST3	This pin should be connected to DVSS.
1151	TST4, TST5, TST6, TST7, TST8, TST9, TST10	These pins should be connected to AVSS.

The unused digital I/O pins should be processed appropriately as below.

	ABSOLUT		M RATINGS		
(AVSS=BVSS=DV	(SS=0V; Note 1)				
Parameter		Symbol	min	max	Units
Power Supplies:	Analog	AVDD	-0.3	4.6	V
	Digital	DVDD	-0.3	4.6	V
	BVSS - DVSS (Note 2)	∆GND	-	0.3	V
Input Current, Any	y Pin Except Supplies	IIN	-	±10	mA
Digital Input Volta	age 1 (Except RX1-4 pins)	VIND1	-0.3	DVDD+0.3	V
Digital Input Volta	age 2 (RX1-4 pins)	VIND2	-0.3	AVDD+0.3	V
Ambient Tempera	ture (Power applied)	Та	-10	70	°C
Storage Temperatu	ıre	Tstg	-65	150	°C

Note 1. All voltages with respect to ground.

Note 2. AVSS, BVSS and DVSS must be connected to the same ground.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

	RECOMMENDED OPERATING CONDITIONS								
(AVSS=BVSS=DVSS=0V; Note 1)									
Parameter		Symbol	min	typ	max	Units			
Power Supplies	Analog	AVDD	3.0	3.3	3.6	V			
(Note 3)	Digital	DVDD	3.0	3.3	AVDD	V			

Note 1. All voltages with respect to ground.

Note 3. The power up sequence between AVDD and DVDD is not critical.

WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.

SRC CHARACTERISTICS

(Ta=25°C; AVDD=DVDD=3.3V; AVSS=BVSS=DVSS=0V; data = 24bit; measurement bandwidth = 20Hz ~ FSO/2; unless otherwise specified.)

Parameter	Symbol	min	typ	max	Units
SRC Characteristics:					
Resolution (Note 4)				24	Bits
Input Sample Rate	FSI	8		96	kHz
Output Sample Rate	FSO	32		96	kHz
THD+N (Input = 1kHz, 0dBFS, Note 5)					
FSO/FSI = 44.1 kHz/48 kHz		-	-113	-	dB
FSO/FSI = 48kHz/44.1kHz		-	-113	-	dB
FSO/FSI = 32kHz/48kHz		-	-114	-	dB
FSO/FSI = 96kHz/32kHz		-	-111	-	dB
Worst Case (FSO/FSI = 48kHz/8kHz)		-	-	-103	dB
Dynamic Range (Input = 1 kHz , -60 dBFS , Note 5)					
FSO/FSI = 44.1 kHz/48 kHz		-	114	-	dB
FSO/FSI = 48kHz/44.1kHz		-	115	-	dB
FSO/FSI = 32kHz/48kHz		-	115	-	dB
FSO/FSI = 96kHz/32kHz		-	116	-	dB
Worst Case (FSO/FSI = $32kHz/44.1kHz$)		112	-	-	dB
Dynamic Range (Input = 1kHz, -60dBFS, A-weighted, Note 5)					
FSO/FSI = 44.1 kHz/48 kHz		-	117	-	dB
Ratio between Input and Output Sample Rate(Note 6)	FSO/FSI	0.33		6	-

Note 4. Input data for SRC corresponds to 24bit data. When LSB 4bit data is input, the AK4122A calculates the data as "0" because SRC is 20bit calculation. Therefore, SRC outputs "0" data.

Note 5. Measured by ROHDE & SCHWARZ UPD04, Rejection Filter = wide, 8192point FFT.

Note 6. The "0.33" is the ratio of FSO/FSI when FSI is 96kHz and FSO is 32kHz. The "6" is the ratio of FSO/FSI when FSI is 8kHz and FSO is 48kHz.

S/PDIF RECEIVER CHARACTERISTICS							
(Ta=25°C; AVDD=DVDD=3.0 ~ 3.6V)							
Parameter	Symbol	min	typ	max	Units		
Input Resistance	Zin	-	10	-	kΩ		
Input Voltage	VTH	200			mVpp		
Input Sample Frequency	fs	32	-	96	kHz		

	FILTER CHARACTERISTICS								
(Ta=25°C; AVDD=DV	/DD=3.0 ~ 3.6V; DEM=OF	F)							
Parameter		Symbol	min	typ	max	Units			
Digital Filter									
Passband -0.001dB	$0.985 \leq FSO/FSI \leq 6.000$	PB	0		0.4583FSI	kHz			
	$0.905 \leq FSO/FSI < 0.985$	PB	0		0.4167FSI	kHz			
	$0.714 \leq FSO/FSI < 0.905$	PB	0		0.3195FSI	kHz			
	$0.656 \leq FSO/FSI < 0.714$	PB	0		0.2852FSI	kHz			
	$0.536 \leq FSO/FSI < 0.656$	PB	0		0.2245FSI	kHz			
	$0.492 \leq FSO/FSI < 0.536$	PB	0		0.2003FSI	kHz			
	$0.452 \leq FSO/FSI < 0.492$	PB	0		0.1781FSI	kHz			
	$0.333 \leq FSO/FSI < 0.452$	PB	0		0.1092FSI	kHz			
Stopband	$0.985 \leq FSO/FSI \leq 6.000$	SB	0.5417FSI			kHz			
	$0.905 \leq FSO/FSI < 0.985$	SB	0.5021FSI			kHz			
	$0.714 \leq FSO/FSI < 0.905$	SB	0.3965FSI			kHz			
	$0.656 \leq FSO/FSI < 0.714$	SB	0.3643FSI			kHz			
	$0.536 \leq FSO/FSI < 0.656$	SB	0.2974FSI			kHz			
	$0.492 \leq FSO/FSI < 0.536$	SB	0.2732FSI			kHz			
	$0.452 \leq FSO/FSI < 0.492$	SB	0.2510FSI			kHz			
	$0.333 \leq FSO/FSI < 0.452$	SB	0.1822FSI			kHz			
Passband Ripple		PR			±0.01	dB			
Stopband Attenuation		SA	96			dB			
Group Delay	(Note 7)	GD	-	58.5	-	1/fs			

Note 7. This value is the time from the rising edge of LRCK after data is input to rising edge of LRCK after data is output, when LRCK for Output data corresponds with LRCK for Input.

DC CHARACTERISTICS

(Ta=25°C; AVDD=DVDD=3.0 ~ 3.6V)								
Parameter		Symbol	min	typ	max	Units		
High-Level Input Voltage		VIH	70%DVDD	-	-	V		
Low-Level Input Voltage		VIL	-	-	30%DVDD	V		
High-Level Output Voltage	(Iout=-400µA)	VOH	DVDD-0.4	-	-	V		
Low-Level Output Voltage	(Iout=400µA)	VOL	-	-	0.4	V		
Input Leakage Current		Iin	-	_	±10	μΑ		

Parameter	min	typ	max	Units
Power Supply Current				
Normal operation (PDN pin = "H") (Note 8)				
FSI=FSO=48kHz at Slave Mode: AVDD=DVDD=3.3V		15	-	mA
FSI=FSO=96kHz at Master Mode: AVDD=DVDD=3.3V		29	-	mA
FSI=FSO=96kHz at Master Mode: AVDD=DVDD=3.6V		-	45	mA
Power down (PDN pin = "L") (Note 9)				
AVDD+DVDD		10	100	μA

Note 8. Typ and max values are the value of AVDD+DVDD in each power supply voltage.

Power supply current of each path@Slave Mode, AVDD=DVDD=3.3V, FSI=FSO=48kHz

1. PORT1 \rightarrow SRC \rightarrow PORT3: AVDD=5mA(typ), DVDD=10mA(typ)

2. PORT2 \rightarrow SRC \rightarrow PORT3: AVDD=5mA(typ), DVDD=10mA(typ)

3. DIR \rightarrow SRC \rightarrow PORT3: AVDD=6mA(typ), DVDD=9mA(typ)

Note 9. All digital input pins are held DVSS.

SWITCHING CHARACTERISTICS						
(Ta=25°C; AVDD=DVDD= $3.0 \sim 3.6V$; C _L = $20pF$)						
Parameter	Symbol	min	typ	max	Units	
Master Clock Timing						
Frequency	fCLK	8.192		36.864	MHz	
Pulse Width Low	tCLKL	0.4/fCLK			ns	
Pulse Width High	tCLKH	0.4/fCLK			ns	
LRCK for Input data (LRCK1, LRCK2)						
Frequency	fs	8	50	96	kHz	
Duty Cycle	Duty	48	50	52	%	
LRCK for Output data (LRCK, LRCK2)	C	22		0.6	1 7 7	
Frequency (Note 10)	fs	32		96	kHz	
Duty Cycle Slave Mode	Duty	48	50	52	%	
Master Mode	Duty		50		%	
S/PDIF Clock Recover Frequency	fPLL	32		96	kHz	
Audio Interface Timing						
Input for PORT1						
BICK1 Period	tBCK	1/64fs			ns	
BICK1 Pulse Width Low	tBCKL	65			ns	
Pulse Width High	tBCKH	65			ns	
LRCK1 Edge to BICK1 " [↑] " (Note 11)	tLRB	30			ns	
BICK1 "↑" to LRCK1 Edge (Note 11)	tBLR	30			ns	
SDTI Hold Time from BICK1 "↑"	tSDH	30			ns	
SDTI Setup Time to BICK1 "↑"	tSDS	30			ns	
Input for PORT2 (Slave mode)						
BICK2 Period	tBCK	1/64fs			ns	
BICK2 Pulse Width Low	tBCKL	65			ns	
Pulse Width High	tBCKH	65			ns	
LRCK2 Edge to BICK2 "↑" (Note 11)	tLRB	30			ns	
BICK2 " [↑] " to LRCK2 Edge (Note 11)	tBLR	30			ns	
SDTIO Hold Time from BICK2 "个"	tSDH	30			ns	
SDTIO Setup Time to BICK2 "↑"	tSDS	30			ns	
Output for PORT2 (Slave mode)						
BICK2 Period	tBCK	1/64fs			ns	
BICK2 Pulse Width Low	tBCKL	65			ns	
Pulse Width High	tBCKH	65			ns	
LRCK2 Edge to BICK2 " [↑] " (Note 11)	tLRB	30			ns	
BICK2 "↑" to LRCK2 Edge (Note 11)	tBLR	30			ns	
LRCK2 to SDTIO (MSB) (Except I ² S mode)	tLRS	50		30		
BICK2 "↓" to SDTIO	tBSD			30	ns	
$BICK2 \neq 10$ SD110 Note 10 Min value is 8kHz at BYPASS mode	IDSD			30	ns	

Note 10. Min value is 8kHz at BYPASS mode.

Note 11. BICK1 rising edge must not occur at the same time as LRCK1 edge.

BICK2 rising edge must not occur at the same time as LRCK2 edge.

Parameter	Symbol	min	typ	max	Units
Output for PORT3 (Slave mode)					
BICK Period	tBCK	1/64fs			ns
BICK Pulse Width Low	tBCKL	65			ns
Pulse Width High	tBCKH	65			ns
LRCK Edge to BICK "个" (Note 11)	tLRB	30			ns
BICK "↑" to LRCK Edge (Note 11)	tBLR	30			ns
LRCK to SDTO (MSB) (Except I ² S mode)	tLRS			30	ns
BICK " \downarrow " to SDTO	tBSD			30	ns
Output for PORT2 (Master mode)					
BICK2 Frequency	fBCK		64fs		Hz
BICK2 Duty	dBCK		50		%
BICK2 " \downarrow " to LRCK2	tMBLR	-20		20	ns
BICK2 "↓" to SDTIO	tBSD	-20		30	ns
Output for PORT3 (Master mode)					
BICK Frequency	fBCK		64fs		Hz
BICK Duty	dBCK		50		%
BICK " \downarrow " to LRCK	tMBLR	-20		20	ns
BICK " \downarrow " to SDTO	tBSD	-20		30	ns
Control Interface Timing					
CCLK Period (Note 12)	tCCK	200		1000	ns
CCLK Pulse Width Low	tCCKL	80			ns
Pulse Width High	tCCKH	80			ns
CDTI Setup Time	tCDS	40			ns
CDTI Hold Time	tCDH	40			ns
CSN "H" Time	tCSW	150			ns
CSN "↓" to CCLK "↑"	tCSS	50			ns
CCLK "↑" to CSN "↑"	tCSH	50			ns
CDTO Delay	tDCD			45	ns
CSN "↑" to CDTO Hi-Z	tCCZ			70	ns
Reset Timing					
PDN Pulse Width (Note 13)	tPD	150			ns

Note 11. BICK rising edge must not occur at the same time as LRCK edge.

Note 12. In case of using INT2. When INT2 is not used, the max value is not limited.

Note 13. The AK4122A can be reset by bringing the PDN pin = "L".

[AK4122A]

Timing Diagram

Note : BICK shows BICK1 of PORT1, BICK2 of PORT2 and BICK of PORT3. LRCK shows LRCK1 of PORT1, LRCK2 of PORT2 and LRCK of PORT3. SDTI shows SDTI of PORT1 or SDTIO of PORT2 that is used as input port. SDTO shows SDTO of PORT3 or SDTIO of PORT2 that is used as output port.

Note : BICK shows BICK1 of PORT1, BICK2 of PORT2 and BICK of PORT3. LRCK shows LRCK1 of PORT1, LRCK2 of PORT2 and LRCK of PORT3. SDTI shows SDTI of PORT1 or SDTIO of PORT2 that is used as input port. SDTO shows SDTO of PORT3 or SDTIO of PORT2 that is used as output port.

Asahi KASEI

[AK4122A]

Asahi**KASEI**

OPERATION OVERVIEW

Internal Signal Path

The input source of the SRC can be switched between the outputs of the DIR, PORT1 or PORT2. The input source of the PORT2 and PORT3 can be switched between the outputs of the SRC or BYPASS. When PORT2 is used as an input port, PORT2 cannot be used as an output port. The signal path should be controlled during PWN bit = "0". The Switch Names (ISEL1-0, BYPS and OSEL) in Figure 1 correspond to the register bits that control the switch function. Refer to Table 1.

Figure 1. Connection Input Source & Output Source

Mode	Input PORT	SRC / Bypass	Output PORT	Path	
Widde	ISEL1-0 bit	BYPS bit	OSEL bit	i aui	
0	00: PORT1			$PORT1 \rightarrow SRC \rightarrow PORT3$	
1	01: PORT2	0: SRC		$PORT2 \rightarrow SRC \rightarrow PORT3$	
2	10: DIR		0: PORT3	$DIR \rightarrow SRC \rightarrow PORT3$	
3	00: PORT1		(Note 14)	$PORT1 \rightarrow PORT3$	
4	01: PORT2	1: Bypass		$PORT2 \rightarrow PORT3$	
5	10: DIR			$DIR \rightarrow PORT3$	
6	00: PORT1	0: SRC		$PORT1 \rightarrow SRC \rightarrow PORT2$	
7	10: DIR		1: PORT2	$DIR \rightarrow SRC \rightarrow PORT2$	
8	00: PORT1		(Note 15)	$PORT1 \rightarrow PORT2$	
9	10: DIR	1: Bypass		$DIR \rightarrow PORT2$	

Table 1. Path Select

Default is Mode 0. (Path : PORT1 \rightarrow SRC \rightarrow PORT3)

After PDN pin = "L" \rightarrow "H", SDTIO pin of PORT2 is the input pin.

The DIF1-0 bits of the PORT1 should be set a value except "10" (I²S Compatible) when the DIR is selected as an input port.

Refer to Table 6 and Table 7 for Master/Slave mode setting.

Asahi**KASEI**

M/S2 pin	Mode	Unused pin	Pin I/O	Setting
		MCLK2	Ι	This pin should be connected to DVSS.
т	Slave	BICK2	Ι	This pin should be connected to DVSS.
L	Slave	LRCK2	Ι	This pin should be connected to DVSS.
		SDTIO	Ι	This pin should be connected to DVSS.
		MCLK2	Ι	This pin should be connected to DVSS.
н	Master	BICK2	0	This pin should be open.
п	Waster	LRCK2	0	This pin should be open.
		SDTIO	Ι	This pin should be connected to DVSS.

Note 14. In this case, PORT2 is input port. If PORT2 is unused, the digital I/O pins should be processed appropriately as shown in Table 2.

Table 2. Pin Setting for PORT2

Note 15. In this case, PORT3 is output port. If PORT3 is unused, the digital I/O pins should be processed appropriately as shown in Table 3.

M/S3 pin	Mode	Unused pin	Pin I/O	Setting
		OMCLK	Ι	This pin should be connected to DVSS.
L S	Slave	BICK	Ι	This pin should be connected to DVSS.
	Slave	LRCK	Ι	This pin should be connected to DVSS.
		SDTO	0	This pin should be open.
		OMCLK	Ι	This pin should be connected to DVSS.
Н	Master	BICK	0	This pin should be open.
п	wiaster	LRCK	0	This pin should be open.
		SDTO	0	This pin should be open.

Table 3. Pin Setting for PORT3

System Clock

PORT1 can be operated in slave mode only. PORT2 and PORT3 work in master mode and slave mode. Internal system clock is created by internal PLL using LRCK1, LRCK2 or LRCK of DIR. The MCLK is not needed when PORT2 and PORT3 are in slave mode. Set the MCLK2 pin and OMCLK pin to DVSS. When PORT2 and PORT3 are used in master mode, the MCLK2 pin and OMCLK pin should be supplied MCLK. The M/S2 pin and M/S3 pin control master and slave mode switching. Table 4 and Table 5 show setting of MCLK frequency when PORT2 and PORT3 are master mode. In case of detecting the sampling frequency by MCLK when DIR is used, MCLK (MCLK2 or OMCLK) of selected output port (PORT2 or PORT3) should be input.

ICKS1	ICKS0	MCLK2			
ICK51	ICK50	$32 kHz \leq fs \leq 48 kHz$	$48 \text{kHz} < \text{fs} \le 96 \text{kHz}$		
0	0	256fs	256fs		
0	1	384fs	384fs		
1	0	512fs	N/A	(default)	
1	1	768fs	N/A		

Table 4. MCLK2 frequency select for Master mode

OCKS1	OCKS0	OMCLK		
OCK51	OCK50	$32 kHz \leq fs \leq 48 kHz$	$48 \text{kHz} < \text{fs} \le 96 \text{kHz}$	
0	0	256fs	256fs	
0	1	384fs	384fs	
1	0	512fs	N/A	(default)
1	1	768fs	N/A	

Table 5. OMCLK frequency select for Master mode

Master Mode and Slave Mode

When PORT2 and PORT3 are used as output port, the M/S2 pin and M/S3 pin select either master or slave mode for each port. "H" is for master mode, and "L" is for slave mode. MCLK should be supplied to the port which is in master mode, and the AK4122A outputs BICK and LRCK. BICK and LRCK should be supplied externally to the port which is in slave mode, and MCLK is not needed fro this ports. When PORT2 is used as an input port, the M/S2 pin should be set "H" or "L".

M/S2 pin	BYPS bit	Data I/O	Mode	BICK, LRCK
L	0	I/O	Slave, SRC	
т	1	Input	Slave, Bypass	Input
L	1	Output	Not Available	
Н	0	I/O	Master, SRC	Output
Н	1	I/O	Master, Bypass	Output

M/S3 pin	BYPS bit	Data I/O	Mode	BICK, LRCK	
L	0	Output	Slave, SRC	Input	
L	1	Output	Not Available	mput	
Н	0	Output	Master, SRC	Output	
Н	1	Output	Master, Bypass	Output	

Table 6. Master mode/Slave mode for PORT2

Table 7. Master mode/Slave mode for PORT3

■ Audio Interface Format

The audio interface should be controlled during PWN bit = "0". When in BYPASS mode, BICK1, BICK2 and BICK are fixed to 64fs.

(1) PORT1

Four types of data formats are available and are selected by setting the DIF1-0 bits. (Table 8) In all modes, the serial data is in MSB first, 2's compliment format. The SDTI is latched on the rising edge of BICK1. PORT1 corresponds to slave mode only.

Mode	DIF1	DIF0	Input Format	LRCK	BICK	
0	0	0	16bit, LSB justified	H/L	\geq 32fs	
1	0	1	24bit, MSB justified	H/L	$\geq 48 \mathrm{fs}$	(default)
2	1	0	24bit, I ² S Compatible	L/H	$\geq 48 \mathrm{fs}$	
3	1	1	24bit, LSB justified	H/L	$\geq 48 \mathrm{fs}$	

Table 8. Audio Interface Format for PORT1

Note: The DIF1-0 bits of the PORT1 must not be set "10" (I²S Compatible) when the DIR is selected as an input port.

(2) PORT2

Four kinds of data formats are available and are selected by setting IDIF1-0 bits (Table 9). In all modes, the serial data is in MSB first, 2's compliment format. If PORT2 is selected as an output port, the SDTIO is clocked out on the falling edge of BICK2, and if PORT2 is selected as an input port, the SDTIO is latched on the rising edge of BICK2. The audio interface supports both master and slave modes. In master mode, BICK2 output is fixed to 64fs and the LRCK2 output fixed to 1fs.

Mode	IDIF1	IDIF0	Output Format	Input Format	LRCK	BICK	
0	0	0	24bit, MSB justified	16bit, LSB justified	H/L	\geq 32fs	
1	0	1	24bit, MSB justified	24bit, MSB justified	H/L	\geq 48fs	(default)
2	1	0	24bit, I ² S Compatible	24bit, I ² S Compatible	L/H	\geq 48fs	
3	1	1	24bit, MSB justified	24bit, LSB justified	H/L	\geq 48fs	

Table 9. Audio Interface Format for PORT2

Figure 7. Mode 1 Timing

(3) PORT3

Two kinds of data formats are available and are selected by setting the ODIF bit (Table 10). In both modes, the serial data is in MSB first, 2's compliment format. The SDTO is clocked out on the falling edge of BICK. The audio interface supports both master and slave modes. In master mode, BICK output is fixed to 64fs and LRCK output is fixed to 1fs.

■ Soft Mute Operation

Soft mute operation is performed in the digital domain of the SRC output. Soft mute can be controlled by SMUTE bit or SMUTE pin. The SMUTE bit setting is logically ORed with the SMUTE pin setting. When SMUTE bit goes "1" or SMUTE pin goes "H", the SRC output data is attenuated by $-\infty$ within 1024 LRCK cycles. When the SMUTE bit returned "0" and SMUTE pin goes "L" the mute is cancelled and the output attenuation gradually changes to 0dB during 1024 LRCK cycles. If the soft mute is cancelled before mute state, the attenuation is discontinued and returned to 0dB in the same cycles. The soft mute is effective for changing the signal source without stopping the signal transmission.

- (1) The output data is attenuated by $-\infty$ during 1024 LRCK cycles (1024/fs).
- (2) If the soft mute is cancelled before attenuating to -∞, the attenuation is discontinued and returned to 0dB in the same clock cycles.

■ De-emphasis Filter Control

The AK4122A includes a digital de-emphasis filter (tc=50/15µs) by IIR filter corresponding to three sampling frequencies (32kHz, 44.1kHz and 48kHz).

(1) When input port is DIR

When the input port is DIR and DEAU bit = "1", the de-emphasis filter is enabled automatically by sampling frequency (FS3-0 bit) and pre-emphasis information in the channel status. DEM1-0 bits can control the de-emphasis filter when DEAU bit = "0". When the de-emphasis filter is OFF, the internal de-emphasis filter is bypassed. When PEM bit = "0", the internal de-emphasis filter is always bypassed.

PEM	FS3	FS2	FS1	FS0	Mode
1	0	0	0	0	44.1kHz
1	0	0	1	0	48kHz
1	0	0	1	1	32kHz
1		(Oth	OFF		
0	Х	X	х	X	OFF

PEM	DEM1	DEM0	Mode			
1	0	0	44.1kHz			
1	0	1	OFF	(default)		
1	1	0	48kHz			
1	1	1	32kHz			
Table 12 De amphagia Manuel Control (DEAU bit - "0")						

Table 11. De-emphasis Auto Control (DEAU bit = "1")

Table 12. De-emphasis Manual Control (DEAU bit = "0")

(2) When input port is PORT1 or PORT2

When PORT1 or PORT2 is selected as an input port, DEM1-0 bits can control the de-emphasis filter regardless of the DEAU bit setting. In this case, the de-emphasis filter can not be enabled automatically. When the de-emphasis setting is OFF, the internal de-emphasis filter is bypassed.

DEM1	DEM0	Mode								
0	0	44.1kHz								
0	1	OFF	(default)							
1	0	48kHz								
1	1	32kHz								
Table 1	Table 12 De annhagis Manual Control									

System Reset and Power-Down

The AK4122A has a full power-down mode for all circuits that is activated by the PDN pin, and a partial power-down mode activated by the PWN bit. The AK4122A should be reset once at power-up by bringing the PDN pin = "L".

PDN pin:

All analog and digital circuits are placed in power-down and reset modes by bringing the PDN pin = "L". All the registers are initialized and clocks are stopped. Read/Write operations to the registers are disabled.

PWN bit (Address 00H; D0):

Unlike the PDN pin operation described above, internal registers and mode settings are not initialized. Read/Write operations to the registers are enabled.

System Reset

Bringing the PDN pin = "L" sets the AK4122A in power-down mode and initializes digital filters. When the PDN pin = "L", the SDTO output is "L". The AK4122A should be reset once by bringing the PDN pin = "L" upon power-up. The SDTO becomes valid in less than 100ms from the rising edge of PDN after a reset release by clock supply. Until the SDTO becomes valid, it outputs "L". After the rising of PDN pin, the SDTIO pin is an input pin.

Figure 13. System Reset

Sequence of Changing Clocks

A clock change sequence is shown in Figure 14. An internal reset is executed when the input or the output clocks are changed. The SDTO data is placed "0" during the reset. Within 100ms, the SDTO outputs normal data after the reset. When the frequency transition occurs gradually without phase change or when the output clock is changed while fso/fsi > 4, the output data may have large distortion for several seconds. A reset should be made by bringing the PDN pin = "L" or PWN bit = "0" to obtain normal data within 100ms when clocks are changed.

Figure 14. Sequence of Changing Clocks

- Note 16. The data on SDTO may cause a clicking noise. To prevent this, set SDTI or SDTIO to "0" from GD before the PDN pin changes to "L", which will cause the data on SDTO to remain "0". SMUTE can also remove this clicking noise.
- Note 17. The data on SDTO may cause a clicking noise. To prevent this, set SDTI to "0" for 1024/fso+100ms or more from the timing when the PDN pin changes to "H" while the SMUTE pin = "H".
- Note 18. The data on SDTO may cause a clicking noise. To prevent this, set SDTI to "0" for 1024/fso+100ms or more from the timing when the PDN pin changes to "H" while the SMUTE pin = "H".

96kHz Clock Recovery

An integrated low jitter PLL of the DIR has a wide lock range of 32kHz to 96kHz and its lock time is less than 20ms. The AK4122A has a sampling frequency detect function (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz) that uses either clock comparison against the MCLK2 or OMCLK frequency or the channel status information. The PLL loses synchronization when receiving preambles in incorrect interval.

Biphase Input

Four inputs (RX1-4) are available for DIR. Each input includes an amplifier for unbalance loads that can accept 200mVpp or greater signal. The IPS1-0 bits select the receiver channel (Table 14).

IPS1	IPS0	Input Data	
0	0	RX1	(default)
0	1	RX2	
1	0	RX3	
1	1	RX4	

 Table 14. Recovery Data Select

Biphase Output

The AK4122A can output through data from the digital receiver inputs (RX1-4) to the TX pin. The OPS1-0 bits can select the source of the TX pin output. TX output can be stopped by TXE bit. The AK4122A does not have a TX output buffer (Line Driver), therefore the TX pin cannot drive the 75 Ω coaxial cable directly.

OPS1	OPS0	Output Data]
0	0	RX1	(default)
0	1	RX2	
1	0	RX3	
1	1	RX4]

Table 15. Output Data Select for TX

Biphase Signal Input Circuit

Figure 15. Consumer Input Circuit (Coaxial Input)

- Note 19. Coaxial input only : if a coupling level to this input by the next RX input line pattern exceeds 50mV, an malfunction may occur. In this case, it is possible to lower the coupling level by adding this decoupling capacitor.
- Note 20. Ground of the RCA connector and terminator should be connected to AVSS of the AK4122A with low impedance on PC board.

Figure 16. Consumer Input Circuit (Optical Input, Using 3.3V Optical Receiver)

When using coaxial input, the input level of the RX line is small. Care must be taken to reduce, crosstalk among RX input lines by inserting a shield pattern between them.

■ Sampling Frequency and Pre-emphasis Detection for DIR

The AK4122A has two methods for detecting sampling frequency for DIR. The sampling frequency is detected by comparing the recovered clock to the MCLK2 or OMCLK frequency, and the detected frequency is reported on FS3-0 bits. XTL1-0 bits, ICKS1-0 bits and OCKS1-0 bits must be set according to the FSO and MCLK frequencies for the detection. (Table 16) When XTL1-0 bits = "11", the sampling frequency is detected by the channel status sampling frequency information. The detected frequency is reported on FS3-0 bits. The default values of FS3-0 bits are "0001". In case of detecting the sampling frequency by MCLK when DIR is used, MCLK (MCLK2 or OMCLK) of selected output port (PORT2 or PORT3) should be input.

FSO	XTL1	XTL0	MCLK2 o	r OMCLK	MCLK Frequency		
F30	AILI	AILU	ICKS1 / OCKS1	ICKS0 / OCKS0	MCLK Flequency		
			0	0	11.2896MHz		
44.1kHz	0	0	0	0	1	16.9344MHz	
44.1K11Z	0	0	1	0	22.5792MHz		
			1	1	33.8688MHz		
	0		0	0	12.288MHz		
48kHz		1	0	1	18.432MHz		
HORITZ		1	1	1	1	0	24.576MHz
			1	1	36.864MHz		
			0	0	24.576MHz		
96kHz	1	0	0	1	36.864MHz		
90KHZ	1	0	1	0	N/A		
			1	1	N/A		
-	1	1	-	-	Use channel status		

Table 16. Reference MCLK Frequency

(default)

					Except XTL1-0 bit = "11" XTL1-0 bit = "11"						
]	Register Output			fs	Clock comparison	Consumer Mode (Note 22) Professional Mode					
FS3	FS2	FS1	FS0		(Note 21)	Byte3	Byte0	Byte4			
						Bit3,2,1,0	Bit7,6	Bit6,5,4,3			
0	0	0	0	44.1kHz	± 3%	0000	01	0000			
0	0	0	1	Reserved	-	0001	(others)	0000			
0	0	1	0	48kHz	± 3%	0010	10	0000			
0	0	1	1	32kHz	± 3%	0011	11	0000			
1	0	0	0	88.2kHz	± 3%	(1000)	00	1010			
1	0	1	0	96kHz	± 3%	(1010)	00	0010			

Table 17. fs Information

- Note 21. Frequencies in a range of \pm 3% are identified as shown in the Table 17. Intermediate frequencies between these frequencies shown in Table 17 are identified as nearer vale and are shown on FS3-0 bits. FS3-0 bits indicate "1100", "1110" or "0001" for the frequencies beyond the range of 32~ 96kHz.
- Note 22. In consumer mode, Byte3 Bit3-0 are copied to FS3-0.

The pre-emphasis information is detected and reported on the PEM bit. This information is extracted from channel 1 by default (CS12 bit = "0"). It can be switched to channel 2 by changing the CS12 bit in the control register.

		Consumer mode	Professional mode			
PEM bit	Pre-emphasis	Byte0	Byte0			
		Bit3,4,5	Bit2,3,4			
0	OFF	≠ 0X100	<i>≠</i> 100			
1	ON	0X100	100			

Table 18. PEM Information

■ Interrupt Handling for DIR

Following nine events cause that the INT2-0 pins go to "H".

1. UNLCK:	PLL unlock state detection UNLCK bit ="1" when the PLL loses lock. The AK4122A loses synchronization when the interval of two preambles is not correct or when those preambles are not correct.
2. PAR:	Parity error or biphase coding error detection PAR bit ="1" when parity error or biphase coding error is detected. It is updated every sub-frame cycle.
3. AUTO:	Non-PCM or DTS-CD Bit Stream detection The ORed result of NPCM and DTSCD bits is output to the AUTO bit.
4. V:	Validity flag detection V bit ="1" when validity flag is detected. It is updated every sub-frame cycle.
5. AUDN:	Non-audio detection AUDN bit= "1" when the recovered channel status indicates "1". It is updated every block cycle.
6. STC:	Sampling frequency or pre-emphasis information change detection STC bit= "1" when FS3-0 or PEM bit is changed. Reading 07H register resets it.
7. CINT:	Channel status sync flag CITN bit="1" when received C bits differ from old ones, and stays "1" until this register is read. Updated every block cycle. Reading 07H register resets it.
8. QINT:	U bit (Q-subcode) sync flag QINT bit ="1" when the Q-subcode differs from old one, and stays "1" until this register is read. Updated every sync code cycle for Q-subcode. Reading 07H register resets it.
9. DAT:	DAT Start ID detection

When the category code shows DAT, this bit becomes "1" if the Start ID of DAT is detected as "1". Reading 08H register resets it.

INT1-0 pins output an OR'ed signal based on the above nine interrupt events. When these registers are masked, the interrupt event does not affect the operation of the INT1-0 pins (the masks do not affect the registers (UNLCK, PAR, etc.) themselves). Once INT0 pin goes to "H", it maintains "H" for 1024 cycles (this value can be changed by the EFH1-0 bits) after all events which is not masked by mask bits are cleared. The INT1 pin immediately returns to "L" when those events are cleared.

The INT2 pin outputs "H" by detecting a status change of events 1~5 and ORed results of the events 6~9. It stays "H" until 07H and 08H registers are read. Mask bits are shared with INT0.

UNLCK, PAR, AUTO, V and AUDN bits indicate the interrupt status events above in real time. STC, QINT and CINT bits at address 07H and DAT bit at 08H are changed to "1" by these events. Once STC, QINT or CINT and DAT bit goes to "1", it stays "1" until the register is read (07H, 08H (DAT bit)).

When the AK4122A loses lock, the channel status bits are initialized. In this initial state, the INT0 and INT2 pins output an OR'ed signal between UNLCK and PAR bits. The INT1 pin outputs an OR'ed signal between AUTO, V and AUDN. INT2-0 pins are "L" when the DIR is not selected.

When DIR is used as input port and the PLL loses lock (unlock state), the output data is muted automatically. When AMUTE bit = "1", SDTIO and SDTO are muted automatically when the AK4122A detects unlock, Non-Audio or Non-PCM/DTS-CD. After the interrupt events are cleared, mute is cancelled automatically. When AMUTE bit = "0", SDTIO and SDTO outputs "L" when the PLL loses lock (unlock state), and outputs "H" when other errors (PAR, AUTO and etc.) are occured.

Asahi KASEI

(1) UNLCK, PAR, AUTO, V and AUDN bits

Figure 17. INT2-0 Timing (UNLCK, PAR, AUTO, V, AUDN bits)

(2) STC, CINT and QINT bits

(1) Hold Time : max. 4096/fs (2) Hold Time = 0

Asahi**KASEI**

(3) DAT bit

(1) Hold Time: max. 4096/fs

(2) Hold Time = 0

Figure 20. Interrupt Handling Sequence Example 1

Figure 21. Interrupt Handling Sequence Example 2

Q-subcode buffers

The DIR of the AK4122A has a Q-subcode buffer for CD applications. The AK4122A takes Q-subcode into registers under the following conditions:

- 1) The sync word (S0, S1) consists of at least 16 "0"s.
- 2) The start bit is "1".
- 3) Those 7-bits Q-W follow the start bit.
- 4) The distance between two start bits is 8-16 bits.

QINT bit should be valid and "0" while Q-subcode is read from the register.

	1	2	3	4	5	6	7	8	*
S0	0	0	0	0	0	0	0	0	0
S1	0	0	0	0	0	0	0	0	0
S2	1	Q2	R2	S2	T2	U2	V2	W2	0
S3	1	Q3	R3	S3	T3	U3	V3	W3	0
:		:	:	:	:	:	:	:	:
S97	1	Q97	R97	S97	T97	U97	V97	W97	0
S0	0	0	0	0	0	0	0	0	0
S1	0	0	0	0	0	0	0	0	0
S2	1	Q2	R2	S2	T2	U2	V2	W2	0
S3	1	Q3	R3	S3	T3	U3	V3	W3	0
:	•		:	:	:	:	:	:	:
		\uparrow		(*) n	umber o	of "0" :	min=0;	max=8	
		Q Figu	re 22. C	Configu	ration o	f U-bit(CD)		

Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24	Q25
	CTRL ADRS								TRA	ACK N	NUME	BER						IND	ЭEХ				
Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49																							
Q26	Q27	Q28	Q29	Q30	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q38	Q39	Q40	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q48	Q49
			MIN	UTE							SEC	OND							FRA	ME			
•																							
Q50	Q51	Q52	Q53	Q54	Q55	Q56	Q57	Q58	Q59	Q60	Q61	Q62	Q63	Q64	Q65	Q66	Q67	Q68	Q69	Q70	Q71	Q72	Q73
			ZE	RO				ABSOLUTE MINUTE				ABSOLUTE SECOND											
•																							
Q74	Q75	Q76	Q77	Q78	Q79	Q80	Q81	Q82	Q83	Q84	Q85	Q86	Q87	Q88	Q89	Q90	Q91	Q92	Q93	Q94	Q95	Q96	Q97
		ABS	OLUT	E FR	AME										CF	SC							
•	G(x)=x ¹⁶ +x ¹² +x ⁵ +1																						
]	Figur	e 23.	Q-st	ibcod	le									
										0		~											

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
13H	Q-subcode Address / Control	Q9	Q8					Q3	Q2
14H	Q-subcode Track	Q17	Q16					Q11	Q10
15H	Q-subcode Index								
16H	Q-subcode Minute								
17H	Q-subcode Second	•••							
18H	Q-subcode Frame	•••							
19H	Q-subcode Zero	•••							
1AH	Q-subcode ABS Minute							•••	
1BH	Q-subcode ABS Second							• • • •	
1CH	Q-subcode ABS Frame	Q81	Q80					Q75	Q74

Figure 24. Q-subcode register map

Asahi**KASEI**

■ Non-PCM (AC-3, MPEG, etc.) and DTS-CD Bitstream Detection

The DIR of the AK4122A has a Non-PCM steam auto-detection function. In the 32-bit mode when Non-PCM preamble based on Dolby "AC-3 Data Stream in IEC60958 Interface" is detected, the NPCM bit goes to "1". The 96-bit sync code consists of 0x0000, 0x0000, 0x0000, 0x7872 and 0x4E1F. Detection of this pattern will set the NPCM bit to "1". Once the NPCM bit is set to "1", it will remain "1" until 4096 frames pass through the chip without an additional sync pattern being detected (Timing diagram: Figure 27and Figure 28). When those preambles are detected, the burst preambles Pc and Pd (Pc: burst information, Pd: length code; Refer to Table 22, Table 23) that follow those sync codes are stored to registers. The AK4122A also has a DTS-CD bitstream auto-detection function. When AK4122A detects DTS-CD bit goes to "1". If the next sync code does not occur within 4096 frames, the DTSCD bit returns to "0" until either the AK4122A detects 14-bit sync word and 16-bit sync word of a DTS-CD bitstream, and these detection can be ON/OFF by DTS14 and DTS16 bits.

Serial Control Interface

The internal registers may be either written or read by the 4-wire μ P interface pins: CSN, CCLK, CDTI and CDTO. The data on this interface consists of Chip address (2bits, C1/0 are fixed to "00"), Read/Write (1bit), Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is latched after the 16th rising edge of CCLK, after a high-to-low transition of CSN. For read operations, the CDTO output goes to high impedance after a low-to-high transition of CSN. The maximum speed of CCLK is 5MHz. The chip address is fixed to "00". Accessing to the chip address except for "00" is invalid. The PDN pin = "L" resets the registers to their default values. Read/Write operation can be made without MCLK, BICK and LRCK clocks.

Register Map

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	PDN & Mode Control	XTL1	XTL0	TXE	SMUTE	DEAU	DEM1	DEM0	PWN
01H	Selector & Clock Control	BYPS	OSEL	ISEL1	ISEL0	ICKS1	ICKS0	OCKS1	OCKS0
02H	Audio Interface Format	0	0	0	ODIF	IDIF1	IDIF0	DIF1	DIF0
03H	DIR Control	CS12	AMUTE	EFH1	EFH0	IPS1	IPS0	OPS1	OPS0
04H	INT0 Mask	MULK0	MPAR0	MAUT0	MV0	MAUD0	MSTC0	MCIT0	MQIT0
05H	INT1 Mask	MULK1	MPAR1	MAUT1	MV1	MAUD1	MSTC1	MCIT1	MQIT1
06H	DAT Mask & DTS Detect	0	0	0	0	DTS16	DTS14	MDAT1	MDAT0
07H	Receiver Status 0	UNLCK	PAR	AUTO	V	AUDN	STC	CINT	QINT
08H	Receiver Status 1	DAT	DTSCD	NPCM	PEM	FS3	FS2	FS1	FS0
09H	Receiver Status 2	0	0	0	0	0	0	CCRC	QCRC
0AH	RX Channel Status Byte 0	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
0BH	RX Channel Status Byte 1	CR15	CR14	CR13	CR12	CR11	CR10	CR9	CR8
0CH	RX Channel Status Byte 2	CR23	CR22	CR21	CR20	CR19	CR18	CR17	CR16
0DH	RX Channel Status Byte 3	CR31	CR30	CR29	CR28	CR27	CR26	CR25	CR24
0EH	RX Channel Status Byte 4	CR39	CR38	CR37	CR36	CR35	CR34	CR33	CR32
0FH	Burst Preamble Pc Byte 0	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
10H	Burst Preamble Pc Byte 1	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8
11H	Burst Preamble Pd Byte 0	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
12H	Burst Preamble Pd Byte 1	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8
13H	Q-subcode Address / Control	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2
14H	Q-subcode Track	Q17	Q16	Q15	Q14	Q13	Q12	Q11	Q10
15H	Q-subcode Index	Q25	Q24	Q23	Q22	Q21	Q20	Q19	Q18
16H	Q-subcode Minute	Q33	Q32	Q31	Q30	Q29	Q28	Q27	Q26
17H	Q-subcode Second	Q41	Q40	Q39	Q38	Q37	Q36	Q35	Q34
18H	Q-subcode Frame	Q49	Q48	Q47	Q46	Q45	Q44	Q43	Q42
19H	Q-subcode Zero	Q57	Q56	Q55	Q54	Q53	Q52	Q51	Q50
1AH	Q-subcode ABS Minute	Q65	Q64	Q63	Q62	Q61	Q60	Q59	Q58
1BH	Q-subcode ABS Second	Q73	Q72	Q71	Q70	Q69	Q68	Q67	Q66
1CH	Q-subcode ABS Frame	Q81	Q80	Q79	Q78	Q77	Q76	Q75	Q74

When th ODN pin is "L", the registers are initialized to their defoult value.

When PORT1 or PORT2 are selected as input port, the status registers (07H ~ 1CH) are initialized.

Note 23. The bits defined as 0 must contain a "0" value.

Note 24. For addresses from $1DH \sim 1FH$, data must not be written.
Register Definitions

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H PDN & Mode Control	XTL1	XTL0	TXE	SMUTE	DEAU	DEM1	DEM0	PWN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	1	1	1	0	0	0	1	1

PWN: Power Down Control

0: Power down

1: Normal operation (default)

"0" powers down all sections. The contents of all register are not initialized and enabled to write to the registers. The internal registers (00H ~ 06H) are not initialized, however, the status registers (07H ~ 1CH) are initialized. Read/Write operations to the registers are enabled.

DEM1-0: De-emphasis Control (Table 12, Table 13) Initial values are "01".

DEAU: De-emphasis Auto Control

- 0: Disable (default)
 - 1: Enable

When DEAU bit = "1", the de-emphasis filter is enabled automatically by sampling frequency and pre-emphasis information in the channel status.

SMUTE: Soft Mute Control

- 0: Normal operation (default)
- 1: SDTIO and SDTO soft mute
 - When SMUTE bit = "1", SDTO and SDTIO outputs "L".
- TXE: TX Output enable
 - 0: Disable, TX outputs "L". 1: Enable (default)
- XTL1-0: Reference MCLK Frequency Select (Table 16) Initial values are "11".

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
01H Selector & Clock Control	BYPS	OSEL	ISEL1	ISEL0	ICKS1	ICKS0	OCKS1	OCKS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	1	0	1	0

OCKS1-0: OMCLK Frequency Select for Master mode (Table 5) Initial values are "10".

ISEL1-0: Input Port Select

Initial values are "00".

ISEL1	ISEL0	Input PORT	
0	0	PORT1	(default)
0	1	PORT2	
1	0	DIR	
1	1	N/A	
	m 11 10 1	DODERI	

Table 19. Input PORT Select

OSEL: Output Port Select

Initial values are "0".

OSEL	Output PORT	
0	PORT3	(default)
1	PORT2	
Table	20. Output PORT	Select

BYPS: Select Bypass mode

0: SRC mode (default)

1: Bypass mode

When BYPS bit = "1", the AK4122A outputs the clocks (BICK, LRCK) and data that is input by input port without SRC.

ICKS1-0: MCLK2 Frequency Select for Master mode (Table 4) Initial values are "10".

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
02H Audio Interface Format	0	0	0	ODIF	IDIF1	IDIF0	DIF1	DIF0
R/W	RD	RD	RD	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0	1	0	1

DIF1-0: Audio Interface Format for PORT1 (Table 8) Initial values are "01".

IDIF1-0: Audio Interface Format for PORT2 (Table 9) Initial values are "01".

ODIF: Audio Interface Format for PORT3 (Table 10) Initial values are "0".

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
03H DIR Control	CS12	AMUTE	EFH1	EFH0	IPS1	IPS0	OPS1	OPS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	1	0	1	0	0	0	0

OPS1-0: Output Through Data Select for TX (Table 15) Initial values are "00".

- IPS1-0: Input Recovery Data Select (Table 14) Initial values are "00".
- EFH1-0: Interrupt 0 pin Hold Count Select Initial values are "01". LRCK of Table 21 is DIR's LRCK, the hold time scales with 1/fs.

-			
	Hold Count	EFH0	EFH1
	512LRCK	0	0
(default)	1024LRCK	1	0
	2048LRCK	0	1
	4096LRCK	1	1
-			

Table 21. Hold count select

- AMUTE: Auto Mute Control
 - 0: Normal operation
 - 1: Auto Mute (default)

When AMUTE bit = "1", SDTIO and SDTO are muted automatically if the AK4122A detects unlock, Non-Audio or Non-PCM/DTS-CD.

CS12: Channel Status select

- 0: Channel 1 (default)
- 1: Channel 2

These bit selects the channel status for C-bit, AuDN, PEM, FS3-0, Pc, Pd and CRC bit.

Addr Regis	ster Name	D7	D6	D5	D4	D3	D2	D1	D0
04H INT0	Mask	MULK0	MPAR0	MAUT0	MV0	MAUD0	MSTC0	MCIT0	MQIT0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	1	1	1	1	1	1
MQIT0:	Mask enable for QINT 0: Mask disable 1: Mask enable (default								
MCIT0:	Mask enable for CINT 0: Mask disable 1: Mask enable (default								
MSTC0:	Mask enable for STC b 0: Mask disable 1: Mask enable (default								
MAUD0:	Mask enable for AUDN 0: Mask disable 1: Mask enable (default								
MV0:	Mask enable for V bit 0: Mask disable 1: Mask enable (default	.)							
MAUT0:	Mask enable for AUTO 0: Mask disable 1: Mask enable (default								
MPAR0:	Mask enable for PAR b 0: Mask disable (defaul 1: Mask enable								
MULK0:	Mask enable for UNLC 0: Mask disable (defaul 1: Mask enable								

Registers which the corresponding mask bit is set to "0" affects INT0 and INT2 pins operation.

	ster Name	D7	D6	D5	D4	D3	D2	D1	D0
05H INT1	Mask	MULK1	MPAR1	MAUT1	MV1	MAUD1	MSTC1	MCIT1	MQIT
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	1	1	0	0	0	1	1	1
MQIT1:	Mask enable for QINT b 0: Mask disable 1: Mask enable (default)								
MCIT1:	Mask enable for CINT b 0: Mask disable 1: Mask enable (default)								
MSTC1:	Mask enable for STC bi 0: Mask disable 1: Mask enable (default)								
MAUD1:	Mask enable for AUDN 0: Mask disable (default 1: Mask enable								
MV1:	Mask enable for V bit 0: Mask disable (default 1: Mask enable)							
MAUT1:	Mask enable for AUTO 0: Mask disable (default 1: Mask enable								
MPAR1:	Mask enable for PAR bi 0: Mask disable 1: Mask enable (default)								
MULK1:	Mask enable for UNLCI 0: Mask disable 1: Mask enable (default)								

Registers which the corresponding mask bit is set to "0" affects the INT1 pin operation.

Addr Register Name		D7	D6	D5	D4	D3	D2	D1	D0
06H DAT Mask & DTS D	etect	0	0	0	0	DTS16	DTS14	MDAT1	MDAT0
R/W		RD	RD	RD	RD	R/W	R/W	R/W	R/W
Default		0	0	0	0	1	1	1	1

MDAT0: Mask enable for DAT bit 0: Mask disable 1: Mask enable (default)

If this mask bit is set to "0", DAT bit affects INT0 and INT2 pins operation.

MDAT1: Mask enable for DAT bit 0: Mask disable 1: Mask enable (default)

If this mask bit is set to "0", DAT bit affects the INT1 pin operation.

- DTS14: DTS-CD 14bit Sync Word Detect 0: No detect 1: Detect (default)
- DTS16: DST-CD 16bit Sync Word Detect 0: No detect 1: Detect (default)

ddr Register	Name	D7	D6	D5	D4	D3	D2		D1	D0
7H Receive	r Status 0	UNLCK	PAR	AUTO	V	AUDN	STC	(CINT	QINT
	R/W	RD	RD	RD	RD	RD	RD		RD	RD
]	Default	0	0	0	0	0	0		0	0
0	ubcode Buffer Inter : No change : Changed This bit goes to "1	-	bcode sto	red in regist	er addresse	es 13H to 1C	CH is upda	ated.		
	nnel Status Buffer I : No change	Interrupt								
	: Changed									
1	This bit goes to "1	l" when C-bit	t stored in	register add	resses 0Al	H to 0EH ch	anges.			
	č			-			e			
STC: Sam	pling Frequency or	Pre-emphasi	s Informat	tion Change	Detection					
	: No detect	1		C						
1	: Detect									
	This bit goes to "I	l" when eithe	r the FS3-	0 or PEM b	it changes.					
	udio Bit Output									
	: Audio									
1	: Non audio		1	· · · 1. 34 -						
	This bit is made b	y encoding cl	nannel sta	tus bits.						
V: Validit	v Bit									
	: Valid									
	: Invalid									
	Ion-PCM or DTS-C : No detect	D Bit Steam	Auto Dete	ection						
	: Detect									
1		n OD'ad ragu	It of NDCI	A and DTC	D hita					
	This bit outputs a	II OK eu lesu		vi allu DISC	D DIIS.					
PAR: Pari	ty Error or Bi-phase	e Error Status								
	: No error									
0										
	: Error									

UNLCK: PLL Lock Status

0: Lock

1: Unlock

QINT, CINT and STC bits are initialized when 07H is read.

Addr Reg	gister Name	D7	D6	D5	D4	D3	D2	D1	D0
08H Rec	eiver Status 1	DAT	DTSCD	NPCM	PEM	FS3	FS2	FS1	FS0
	R/W	RD	RD	RD	RD	RD	RD	RD	RD
	Default	0	0	0	0	0	0	0	1

FS3-0: Sampling Frequency Detection (Table 17)

- PEM: Pre-emphasis Detect (Table 18)
 - 0: OFF
 - 1: ON

This bit is made by decoding the channel status bits.

NPCM: Non-PCM Bit Stream Auto Detection 0: No detect 1: Detect

DTSCD: DTS-CD Bit Stream Auto Detect

- 0: No detect
- 1: Detect

DAT: DAT Start ID Detect

- 0: No detect
- 1: Detect

When the category code shows DAT, this bit becomes "1" if the Start ID of DAT is detected as "1". Reading 08H register resets this bit to "0".

DAT bit is initialized when 08H is read.

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
09H Receiver Status 2	0	0	0	0	0	0	CCRC	QCRC
R/W	RD	RD						
Default	0	0	0	0	0	0	0	0

QCRC: Cyclic Redundancy Check for Q-subcode

- 0: No error
- 1: Error
- CCRC: Cyclic Redundancy Check for Channel Status
 - 0: No error
 - 1: Error

This bit is enabled only in professional mode and only for the channel selected by the CS12 bit.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0AH	RX Channel Status Byte 0	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
0BH	RX Channel Status Byte 1	CR15	CR14	CR13	CR12	CR11	CR10	CR9	CR8
0CH	RX Channel Status Byte 2	CR23	CR22	CR21	CR20	CR19	CR18	CR17	CR16
0DH	RX Channel Status Byte 3	CR31	CR30	CR29	CR28	CR27	CR26	CR25	CR24
0EH	RX Channel Status Byte 4	CR39	CR38	CR37	CR36	CR35	CR34	CR33	CR32
R/W		RD							
	Default				Not init	ialized			

CR39-0: Receiver Channel Status Byte 4-0

All 40 bits are updated at the same time every block (192 frames) cycle.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0FH	Burst Preamble Pc Byte 0	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
10H	Burst Preamble Pc Byte 1	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8
11H	Burst Preamble Pd Byte 0	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
12H	Burst Preamble Pd Byte 1	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8
R/W		RD							
	Default				Not init	ialized			

PC15-0: Burst Preamble Pc Byte 0 and 1

PD15-0: Burst Preamble Pd Byte 0 and 1

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
13H	Q-subcode Address / Control	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2
14H	Q-subcode Track	Q17	Q16	Q15	Q14	Q13	Q12	Q11	Q10
15H	Q-subcode Index	Q25	Q24	Q23	Q22	Q21	Q20	Q19	Q18
16H	Q-subcode Minute	Q33	Q32	Q31	Q30	Q29	Q28	Q27	Q26
17H	Q-subcode Second	Q41	Q40	Q39	Q38	Q37	Q36	Q35	Q34
18H	Q-subcode Frame	Q49	Q48	Q47	Q46	Q45	Q44	Q43	Q42
19H	Q-subcode Zero	Q57	Q56	Q55	Q54	Q53	Q52	Q51	Q50
1AH	Q-subcode ABS Minute	Q65	Q64	Q63	Q62	Q61	Q60	Q59	Q58
1BH	Q-subcode ABS Second	Q73	Q72	Q71	Q70	Q69	Q68	Q67	Q66
1CH	Q-subcode ABS Frame	Q81	Q80	Q79	Q78	Q77	Q76	Q75	Q74
	R/W				R)			
	Default				Not init	ialized			

Q81-2: Q-subcode

All 80 bits are updated at the same time every sync code cycle for Q-subcode.

Burst Preambles in Non-PCM Bitstreams

Figure 26. Data Structure of IEC60958

Preamble word	Length of field	Contents	Value
Ра	16 bits	sync word 1	0xF872
Pb	16 bits	sync word 2	0x4E1F
Pc	16 bits	Burst info	see Table 23
Pd	16 bits	Length code	numbers of bits

Table 22. Burst Preamble Word

Bits of Pc	Value	Contents	Repetition time of burst in IEC60958 frames
0-4		data type	
	0	NULL data	≤ 4096
	1	Dolby AC-3 data	1536
	2	reserved	
	3	PAUSE	
	4	MPEG-1 Layer1 data	384
	5	MPEG-1 Layer2 or 3 data or MPEG-2 without extension	1152
	6	MPEG-2 data with extension	1152
	7	MPEG-2 AAC ADTS	1024
	8	MPEG-2, Layer1 Low sample rate	384
	9	MPEG-2, Layer2 or 3 Low sample rate	1152
	10	reserved	
	11	DTS type I	512
	12	DTS type II	1024
	13	DTS type III	2048
	14	ATRAC	512
	15	ATRAC2/3	1024
	16-31	reserved	
5,6	0	reserved, shall be set to "0"	
	0	error-flag indicating a valid burst_payload	
7	1	error-flag indicating that the burst_payload may contain	
		errors	
8-12		data type dependent info	
13-15	0	bit stream number, must be set to "0"	

Table 23. Field of Burst Information Pc

■ Non-PCM Bitstream Timing

(1) When Non-PCM preamble does not arrive within 4096 frames

PDN pin						
Bit stream	Pa F	Pb Pc1 Pd1	Pa Pb P	C2 Pd2	Pa Pb Pc	Pd3
AUTO bit			Repetition time	>4096 fran		
AUTO DI						
Pc Register	"0"		Pc1		Pc2	Рсз
Pd Register	"0"		Pd1		Pd ₂	Pd ₃
			Figure 27. Timing	example 1		
			119410 27. 1111116	enumpre i		
(2) When N	on-PCM bitstream	stops (whe	en MULK0 bit = "0")			
INT0 pin			<	20mS (Lock time)	✓ INT0 hold time →	
		_		• • • • •		
Bit stream	Pa Pb Pc1 Pc	11 	Stop 4 2~3 Syncs	(P. M. or. \\/)	Pa Pb Pcn Pc	dn
AUTO bit			i 4 → 2~3 Syncs		← <repetition p="" time="" →<=""></repetition>	
					·]	
Pc Register	Pco			Pc1		PCn
Pd Register	Pdo			Pd ₁		Pdn
	1	1				1

Figure 28. Timing example 2

SYSTEM DESIGN

Figure 29 shows the typical system connection diagram. An evaluation board is available which demonstrates application circuits, the optimum layout, power supply arrangements and measurement results.

• PORT2, PORT3 : Slave Mode

Note:

- AVSS, BVSS and DVSS of the AK4122A should be distributed separately from the ground of external digital devices (MPU, DSP etc.).

- All digital input pins should not be left floating.

Figure 29. Typical Connection Diagram

1. Grounding and Power Supply Decoupling

The AK4122A requires careful attention to power supply and grounding arrangements. Alternatively if AVDD and DVDD are supplied separately, the power up sequence is not critical. **AVSS, BVSS and DVSS of the AK4122A must be connected to analog ground plane.** System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4122A as possible, with the small value ceramic capacitor being the nearest.

2. PLL Loop-Filter

The C1 (2.2 μ F) and R1 (470 Ω) should be connected in series and attached between the FILT pin and AVSS in parallel with C2 (2.2 μ F). Noises onto the FILT pin should be avoided.

Parameter	Recommended value	Accuracy
R1	470Ω	$-5\% \sim +5\%$
C1	2.2µF	-50% ~ +50%
C2	2.2nF	-50% ~ +50%

Note: The accuracy includes temperature dependence. Figure 30. Loop Filter for SRC

The R2 (12k Ω) should be connected in series between R pin and AVSS. Please be careful the noise onto the R pin.

Parameter	Recommended value	Accuracy
R2	12kΩ	$-5\% \sim +5\%$

Note: The accuracy includes temperature dependence. Figure 31. Loop Filter for DIR

3. Jitter Tolerance

Figure 32 shows the jitter tolerance to ILRCK. The jitter frequency and the jitter amplitude shown in Figure 32 define the jitter quantity. When the jitter amplitude is 0.01Uipp or less, the AK4122A operate normally regardless of the jitter frequency.

- (1) Normal operation
- (2) There is a possibility that the distortion degrades. (It may degrade up to about -50 dB.)
- (3) There is a possibility that the output data is lost.

Note:

- The jitter amplitude is for ILRCK and 1UI (Unit Interval) is one cycle of ILRCK. When FSI = 48kHz, 1UI is 1/48kHz = 20.8μ s.

Figure 32. Jitter Tolerance

PACKAGE

48pin LQFP(Unit: mm)

Material & Lead finish

Package molding compound:	Epoxy
Lead frame material:	Cu
Lead frame surface treatment:	Solder (Pb free) plate

XXXXXXXX: Date code identifier

		I IIOT	
RFV	ISION	HISTO	
			21/1

Date (YY/MM/DD)	Revision	Reason	Page	Contents
09/05/19	00	First Edition		
10/05/17	01	Description Addition	24	 Sequence of changing clocks Description is added in notes.

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

• It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.