

R2A20056BM

Lithium-Ion Battery Charger IC with Auto Load Current Distribution

R03DS0075EJ0100 Rev. 1.23 Apr 15,2013

Description

R2A20056BM is a semiconductor integrated circuit designed for Lithium-ion battery charger control IC. Built-in Input current limitation circuit compliant with USB requirements and dual output (system and battery) control circuit allows to supply the system power and the battery charging power simultaneously from input power.

Features

- Allows to USB charging
 - Automatic USB detection and automatic input current limitation setup (USB battery charging 1.2 and VBUS divided port)
 - Input current limitation is programmable by I2C
 - I²C 100mA/500mA/1000mA/1500mA/1800mA/Limitless/Suspend
- Weak battery charge function
- High precision charge control voltage : 4.2V+/-21mV (+/-0.5%)
- Auto load current distribution control
 - Auto power management between system load and battery charge within input current limitation
 - Built-in low Ron path switch (30mohm)
 - System output voltage regulation
 - Default position : V_{IN} pass-through
 - Switching between V_{IN} pass-through and V_{SYS45}
- Compliance with JEITA guideline
- Thermistor I/F detects battery temp. to control CC/CV parameters by built-in charge profile
- I2C interface
- Adjustable charging parameters
- Protection function
 - Input UVLO/OVLO Battery over voltage detection Timer
 - Chip temperature detection Thermal shutdown
- Recharge function
- Gate control for system Load SW (/SG)
- Input power OK output (/POK)
- Charge State output (/STAT)

Application

- Digital Still Camera
- Digital Video Camera
- Mobile Phone
- PDA/PND
- Tablet/Note PC
- Portable Audio Player
- Portable Game Machine

Block Diagram

Pin function

No.	Terminal name	I/O	Function	
A1,A2,B1,B2	IN	I	Power input(Each IN terminal must be short-circuited on the board)	
A3,B3	N.C.	-	Non connect (keep these terminals open)	
A4,B4	SYS	0	System power output (Each SYS terminal must be short-circuited on the board)	
A5,B5	BAT	I/O	Battery connection terminal (Each BAT terminal must be short-circuited on the board)	
C1	GND	GND	Ground	
C2	/CEN	I	Charge enable	
C3	CTL	I	Input current limitation terminal	
C4	USUP	I	Suspend terminal	
C5	RICHG	0	Resistor connection terminal for setting charge current	
D1	/STAT	0	Charge State output (During charge:ON, Error : Blinking)	
D2	DP	I	USB DP port input	
D3	SGREF	I	Reference voltage input terminal for /SG control voltage	
D4	/SG	0	Gate control terminal for system Load SW	
D5	THVDD	0	Regulated voltage output for the thermistor (2.0V)	
E1	/POK	0	Input power OK output(Open Drain)	
E2	DM	I	USB DM port input	
E3	SDA	I/O	Serial data input/output	
E4	SCL	I	Serial clock input	
E5	TH	Ι	Thermistor input	

[/CEN	Charge function	USUP	Suspend	CTL	SDP input current limit
	Lo	Enable	Lo	Disable	Lo	100mA
	Hi	Disable	Hi	Enable	Hi	500mA

Absolute maximum ratings

Symbol	Ite	ems	Ratings	Unit
V _{max}	Input voltage	IN	-0.3 to 25	V
		Other Pin	-0.3 to 6.5	V
I _{INmax}	Input current	IN	2.5	А
		IN (peak) _{*1}	4.0	А
I _{omax}	Output current	SYS	2.5	А
		SYS (peak) _{*1}	4.0	А
		BAT	2.5	А
		BAT (peak) _{*1}	4.0	А
		THVDD	1	mA
I _{osmax}	Output sink current	/STAT,/POK	15	mA
T _{opr}	Operating ten	nperature range	-30 to 85	degC
T _{stg}	Storage tem	-40 to 125	degC	
Tj	Junction t	-30 to 125	degC	
Pd	Power di	ssipation *2	2.12	W

(Ta=25degC, unless otherwise specified.)

*1 Within 200µs

*2 This value is at 75mm x 75mm x 1mm of FR4 board with 4 layers at Ta=25 degC. It depends on the board condition.

Recommended operating condition

(Ta=25degC, unless otherwise specified.)

Symbol	Items	Min	Max	Unit
V _{IN}	IN input voltage	4.5	5.5	V
I _{IN}	IN input current	-	1.5	Α
I _{SYS}	SYS output current	-	2	Α
I _{BAT}	BAT output current	-	2	A
I _{CHG}	Charge current	-	1	Α
T _j	Junction temperature	-30	125	degC
RICHG	Resistor value for setting charge current	1.6	24	Kohm

Electrical Characteristics

(Ta=25degC and Vin=5V, unless otherwise specified.)

Item	Symbol	Condition	Ra	ated valu	le	Unit
llem	Symbol	Condition	Min.	Тур.	Max.	Unit
Input voltage detection	i	i				
V_{IN} detection voltage	V _{UVLO}	When V _{IN} voltage rising 250mV Hysteresis	3.1	3.3	3.5	V
V_{IN} detection voltage	V _{InBat} (VIN-VBAT)	V _{BAT} =3.6V, When V _{IN} voltage rising, 45mV Hysteresis	0	90	180	mV
/POK detection time *1	t _{dglh(/pok)}	V _{IN} :0V to 5V, /POK = Lo		64		ms
Input over voltage protection(OVP)	V _{OVP}	When V _{IN} voltage rising, 110mV Hysteresis	6.1	6.3	6.5	V
OVP detection time *1	t _{DGLH(OVP)}	When V _{IN} voltage rising		32		μs
OVP release detection time *1	t _{DGLL(OVP)}	When V_{IN} voltage falling		64		ms
Over Load detection	V _{HL}	When V_{IN} voltage falling	4.3	4.4	4.5	V
Circuit current						
BAT discharge current 1	I _{SB1(BAT)}	V _{BAT} =4.2V, No Load on SYS Pin			7.5	μA
BAT discharge current 2	I _{SB2(BAT)}	V _{IN} =5V, V _{BAT} =4.2V, No Loads on SYS Pin, At charge completion			7.5	μA
BAT discharge current 3	I _{SB3(BAT)}	V _{BAT} =3.2V, No Load on SYS Pin, At 'error 1'			20	μA
Standby current	I _{SB(IN)}	V _{IN} =5V,Suspend			1.5	mA
Circuit current	I _{CC(IN)}	V _{IN} =5V, /CEN=HI, I _{SYS} =0			6	mA
Auto load current distribution and	I Input current li	mitation				-
ON Resistance between IN and SYS	R _{IN-SYS}	V _{IN} =5.0V,I _{SYS} =0.2A USB1500mA setting		250	450	mΩ
ON Resistance between BAT and SYS (supplied from BAT)	R _{BAT-SYS}	V _{IN} =0V,V _{BAT} =4.2V, I _{SYS} =0.2A		30	60	mΩ
VSYS regulation voltage	V _{SYS45}	V _{IN} =5V,V _{BAT} =3.5V	4.4	4.5	4.6	V
	I _{LIMO}	USB100mA Mode	80	90	100	mA
	I _{LIM1}	USB500mA Mode	450	475	500	mA
Input current limitation	I _{LIM2}	USB1000mA Mode	800	900	1000	mA
	I _{LIM3}	USB1500mA Mode	1200	1350	1500	mA
	I _{LIM4}	ADP1800mA Mode	1500	1710	1800	mA
VSYS regulation voltage (When current distribution works)	V _{SYS43}	USB500mAMode When current distribution works V _{IN} =5V,V _{BAT} =3.7V	4.2	4.3	4.4	V
Regulation voltage between BAT and SYS	V _{SYSR}	USB100mAMode I _{SYS} =200mA V _{IN} =5V,V _{BAT} =3.7V	0.05	0.1	0.15	V

*1:Design guarantee

Electrical Characteristics						
		(Ta=25degC and Vin=5∨	, unless	otherwis	se speci	fied.)
Item	Symbol	Condition	R Min.	ated valu Typ.	le Max.	Unit
Battery voltage detection		1		•)p.	max	
Charge control voltage(4.20V)	V _{chg4.20V}	V _{CHG} =4.20V,I _{BAT} =0A	4.179	4.200	4.221	V
Charge control voltage(4.15V)	V _{chg4.15V}	V _{CHG} =4.15V,I _{BAT} =0A	4.10	4.15	4.20	V
Charge control voltage(4.10V)	V _{chg4.10V}	V _{CHG} =4.10V,I _{BAT} =0A	4.05	4.10	4.15	V
Charge control voltage(4.05V)	V _{chg4.05V}	V _{CHG} =4.05V,I _{BAT} =0A	4.00	4.05	4.10	V
Charge control voltage(4.00V)	V _{chg4.00V}	V_{CHG} =4.00V,I _{BAT} =0A	3.95	4.00	4.05	V
Charge start voltage	V _{start}	When V _{BAT} voltage rising, 100mV Hysteresis	1.40	1.50	1.60	V
Quick charge start voltage	V _{qchgon}	When V _{BAT} voltage rising, 100mV Hysteresis	2.90	3.00	3.10	V
Recharge start voltage	V _{rechg}	When V _{BAT} voltage falling,	3.70	3.80	3.90	V
Overvoltage detection voltage	V _{ov}	When V _{BAT} voltage rising	4.27	4.35	4.43	V
Charge current detection						
Quick charge current(1.0C)	I _{chg1.0C}	RICHG=(3Kohm),V _{BAT} =3.5V	450	500	550	mA
Quick charge current(0.5C)	I _{chg0.5C}	RICHG=(3Kohm),V _{BAT} =3.5V	200	250	300	mA
Trickle charge current(0.2C)	Iprechg0.2C	RICHG=(3Kohm),V _{BAT} =2.5V	70	100	130	mA
Trickle charge current(0.1C)	Iprechg0.1C	RICHG=(3Kohm),V _{BAT} =2.5V	35	50	65	mA
Charge completion current(0.2C)		RICHG=(3Kohm),When CV control	70	100	130	mA
Charge completion current(0.1C)	I _{fc0.1C}	RICHG=(3Kohm),When CV control	35	50	65	mA
Charge completion current(0.05C)	I _{fc0.05C}	RICHG=(3Kohm),When CV control	10	25	40	mA
Timer circuit	100.050		10	20	10	110 (
Oscillation frequency	F _{osc}		57.6	64.0	70.4	KHz
Trickle charge timer *1	T _{dchg}		54	60	66	Min
Quick charge timer *1	T _{chg}		270	300	330	Min
Weak Battery timer ∗1			36	40	44	Min
Chip temperature detection	T _{wchg}		50	40		IVIIII
		Chin tomporaturo				
Chip temperature detection *1	T _{treg}	Chip temperature, 10degC Hysteresis		110		degC
Chip temperature reset detection*1	T _{trgrst}	Chip temperature		125		degC
Thermal shutdown temperature∗₁	T _{sd}	Chip temperature		150		degC
Thermistor detection *2						
THVDD output voltage	V _{THVDD}	lo=0mA	1.90	2.00	2.10	V
Temperature protection detect voltage 1	T _{THMVL}	R _{pu} =100K,R _{th} =311.6K, 2.5degC(±2.5degC)	73.15	75.70	78.12	%
Temperature protection detect voltage hysteresis 1	V _{THMVL}	$2.5 degC+2.5 degC(\pm 2 degC)$	17	51	85	mV
Temperature protection detect voltage 2	T _{THML}	R _{pu} =100K,R _{th} =184.5K, 12.5degC(±2.5degC)	61.93	64.85	67.71	%
Temperature protection detect voltage hysteresis 2	V _{THML}	$12.5 degC+2.5$ °C($\pm 2 degC$)	20	59	98	mV
Temperature protection detect voltage 3	Ттнмн	R _{pu} =100K,R _{th} =45.5K, 42.5degC(±2.5degC)	29.03	31.27	33.63	%
Temperature protection detect voltage hysteresis 3	V _{THMH}	42.5degC-2.5°C(±2degC)	16	47	78	mV
Temperature protection detect voltage 4	T _{THMVH}	R _{pu} =100K,R _{th} =24.5K, 57.5degC(±2.5degC)	18.18	19.69	21.32	%
Temperature protection detect voltage hysteresis 4	V _{THMVH}	57.5degC-2.5degC(±2degC)	11	32	53	mV
Thermistor connection detect voltage	T _{THCON}	R _{pu} =100K	90	93	96	%

*1: Design guarantee *2: NCP15WF104F03RC(MURATA)

Electrical Characteristics

(Ta=25degC and Vin=5V, unless otherwise specified.)

Itom	Symbol	Condition	Ra	ated val	ue	Unit
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
/CEN,CTL,USUP terminal		_	-	-		
Input High voltage	V _{INH}		1.2			V
Input Low voltage	V _{INL}				0.5	V
Input source current	Iн	V _{INH} =2.8V			50	μA
Input sink current	IIL	V _{INL} =0.03V			1	μA
SCL,SDA terminal						
Input High voltage	V _{INH(I2C)}		1.4			V
Input Low voltage	V _{INL(I2C)}				0.3	V
Output Low voltage (SDA)	V _{OL(SDA)}	I _{sink} =3mA			0.4	V
Input source current	I _{IH(I2C)}	V _{INH(I2C)} =1.8V			5	μA
Input sink current	I _{IL(I2C)}	V _{INL(I2C)} =0.03V			1	μA
/POK,/STAT terminal						
Output Low voltage	V _{OL}	I _{SINK} =5mA			0.4	V
Gate control for System Load SW						
Low battery detection voltage (Internal)	V _{sysswoff}	V _{SGREF} >V _{sysref_sw}	3.3	3.4	3.5	V
Low battery detection voltage hysteresis (Internal Setting)	V _{sysswoff_in_hys}	V _{SGREF} >V _{sysref_sw}	33	100	166	mV
Low battery detection voltage hysteresis (External Setting)	V _{sysswoff_out_hys}	V _{sysswoff_out} =3.4V	100	200	300	mV
SGREF detection voltage	V _{sysref_sw}		1.7	1.8	1.9	V
USB detection	-			-	-	-
DP to DM short resistance	R _{DPM_SHORT}	USB battery charging 1.2		125	200	Ω
DP terminal voltage	V_{DP_SRC}	USB battery charging 1.2	0.5	0.6	0.7	V
DM terminal voltage	V _{DM_SRC}	USB battery charging 1.2	0.5	0.6	0.7	V
DP terminal sink current	I _{DP_SINK}	USB battery charging 1.2	50		150	μA
DM terminal sink current	I _{DM_SINK}	USB battery charging 1.2	50		150	μA
Data detection voltage (When rising)	V _{DAT_REF}	USB battery charging 1.2	0.25		0.40	V
Divided Port						
Divided Port Middle voltage	V _{DIV_MID}		1.90	2.00	2.10	V
Divided Port High voltage	V _{DIV_HIGH}		2.55	2.68	2.81	V

R2A20056BM

Charge state diagram

Note:

* During quick charge, junction temperature is monitored to limit charge current value between 0.2C-1.0C so that the junction temperature may not exceed Ttreg.

* The High temp. charge-1 (04H) is operating at Ta=85 degC in above waveform.

Battery temperature detection

This IC detects battery temperature with thermistor I/F and controls CV voltage according to built-in charge profile.

Battery Temp.

There is the delay time(64ms x 4times=256ms) for preventing erroneous detection before judging the battery temperature.

Control Diagram corresponding JEITA Guideline

When PSE control (ADR=02H) is 'Enable' setting, the charge control voltage changes as the above chart according to JEITA guide line. But when VCHG setting (ADR=00H) is 4.00V, the charge control voltage at low rate charge is also 4.00V not 4.05V.

When PSE control (ADR=02H) is 'Disable' setting, the charge control voltage depends on the VCHG setting (ADR=00H).

When THBATCON (ADR=02H) is 'Enable' setting, the battery connection is detected with battery voltage or TH voltage. For details, please refer to '<u>Battery connection detection'.</u>

When thermistor is not used, please connect TH terminal with THVDD terminal and set 'PSE control (ADR=02H)' to 'Disable'.

Resister value for thermistor

TEMP. (deg.C)	R(KΩ)
2.5	311.6
5.0	272.5
12.5	184.5
15.0	162.7

TEMP. (deg.C)	R(KΩ)
40.0	50.7
42.5	45.5
55.0	27.1
57.5	24.5

*: NCP15WF104F03RC (Murata)

USB port detection

[USB port detection flow chart]

This IC detects the type of USB port as the following chart after USB connection.

6 types of USB port detection are enabled by detecting DP and DM terminals and the current limit is automatically set for each port. This detection starts after applying the voltage above V_{ULVO} (TYP. 3.3V) to IN terminal or sending reset signal by RST_USBDET (ADR:02H).

No.	Port	USB battery charging 1.2	Current limit (mA)
1	SDP (Standard Downstream Port)	0	100 or 500 *1
2	CDP (Charging Downstream Port)	0	1500
3	DCP (Dedicated Charging Port)	0	1500
4	VBUS Divided Port 1	-	500
5	VBUS Divided Port 2	-	1000
6	VBUS Divided Port 3	-	1800

*1 It depends on CTL terminal setting

CTL	SDP current limit
Lo	100mA
Hi	500mA

The detection result is stored in the registers.

When DP and DM terminals are open, this IC regards the port as SDP and indicates '1' in 'TOUT_DCD' register.

When DP>3.3V or DM>3.3V, this IC indicates 'ERROR' register and enter the suspend mode. Suspend is can be dissolved by 'RST_USBDET' or 'USBMD'.

04H USB Detection result (Read only)

Bit5	Bit4	Bit3	USB
0	0	0	SDP (Standard Downstream Port)
0	0	1	CDP (Charging Downstream Port)
0	1	0	DCP (Dedicated Charging Port)
1	0	0	VBUS Divided Port 1
1	0	1	VBUS Divided Port 2
1	1	0	VBUS Divided Port 3
0	1	1	DP ERROR
1	1	1	DM ERROR

For VBUS Divided Port, this IC detects the combination of the divided voltage with 'DP' and 'DM' terminals as the following chart.

Port	DP	DM	Current limit(mA)
VBUS Divided Port 1	2.00V	2.00V	500
VBUS Divided Port 2	2.00V	2.68V	1000
VBUS Divided Port 3	2.68V	2.00V	1800

* These voltages are the divided voltage at V_{IN} =5.0V. These voltages also change with V_{IN} voltage at this dividing ratio.

* Please set the downside resistance of the divided resistances to be above 100Kohm.

DP and DM terminal become Hi-Z (open) after USB detection.

Dead Battery Provision

When VBAT < $V_{sysswoff_set}$ (low battery detection voltage) at the USB detection, the behaviors for each USB port are as follows:

- < SDP (Standard Downstream Port) >
- SG terminal is 'H'.
- Trickle charge or quick charge can start.
- Dead Battery Provision starts and DP terminal outputs $V_{\text{DP SRC}}$ (Typ. 0.6V).
- If VBAT doesn't exceed V_{sysswoff} in T_{wchg} (typ. 40min.), it shifts into the suspend mode. Please reconnect with V_{IN} to resolve this suspend mode.
- It can stop Weak Battery timer to set Timer Control (ADR=01H) to 'RESET' or 'Count Stop'. Setting input current with 'USBMD'='1' can avoid shifting into the suspend mode.
- When VBAT > V_{sysswon} (V_{sysswoff} + V_{sysswoff_hys}), the USB detection is carried out again. During the USB detection, it shifts into the suspend mode and SYS terminal outputs BAT voltage. The charge function starts from 'Default (00H)' and SG terminal is 'L'. DP and DM terminals becomes Hi-Z (open) after the USB detection.

If the battery voltage drops below V_{sysswoff} after this, Dead Battery Provision doesn't start again. /SG is set to 'H' but Weak Battery timer and V_{DP_SRC} output from DP terminal don't operate.

- < DCP (Dedicated charging Port) >
- SG terminal is 'H'.
- Trickle charge or quick charge can start.
- Dead Battery Provision starts and DP terminal outputs $V_{\text{DP SRC}}$ (Typ. 0.6V).
- Weak Battery timer (Typ. 40 min) doesn't count up. But the each charging timer (trickle or quick charge timer) counts up.
- When VBAT > V_{sysswon} (V_{sysswoff} + V_{sysswoff_hys}), the USB detection is carried out again.
 During USB detection, it shifts into the suspend mode and SYS terminal outputs BAT voltage.
 The charge function starts from 'Default (00H)' and SG terminal is 'L'. DP and DM terminals becomes Hi-Z (open) after the USB detection.

If the battery voltage drops below $V_{sysswoff}$ after this, Dead Battery Provision doesn't start again. /SG is set to 'H' but $V_{DP SRC}$ output from DP terminal doesn't operate.

- < CDP (Charging Downstream Port) >
- the operation is the same as DCP. But during Dead Battery Provision mode, this port is detected as 'DCP' and USB detection register (ADR=04H) also indicates 'DCP'.
- < Divided port 1,2,3>
- There isn't Dead Battery Provision for Divided port. USB detection after good battery detection doesn't start.
- SG terminal is 'H'.

Connecting IN terminal when BAT is open is regarded as 'Weak Battery' and Dead Battery Provision starts. If Dead Battery Provision continues in T_{wchg} , it shifts into the suspend mode. For avoiding shifting into the suspend mode, set timer control (ADR=01H) to 'RESER' or 'Count STOP'.

SGREF terminal setup

The low battery detection voltage (V_{sysswoff}) is used for the following functions.

- Detection weak battery after 'Forced charge (01H)'
- On/off function for MOSFET for System load SW'

SGREF terminal voltage (V_{SGREF}) can set the low battery detection voltage(V_{sysswoff}).

[SGREF detection voltage (Typ. 1.8V) < V_{SGREF}]

The internal setting is selected. V_{sysswoff} = V_{sysswoff_in} (Typ. 3.4V) , Hysteresis voltage = V_{syssw_in_hys} (Typ. 100mV) We recommend that SGREF is connected with THVDD when using the internal setting.

[GND < V_{SGREF} < SGREF detection voltage (Typ. 1.8V)] $-V_{\text{sysswoff}} = V_{\text{sysswoff out}}$ Relational expressions are as follows: V_{SGREF} = 0.354 x V_{sysswoff_out} $V_{\text{syssw out hys}} = 200 \text{mV} \text{ x} \overline{V}_{\text{sysswoff out}} / 3.4 \text{V}$

* Input 0.3V to SGREF if the low battery detection function is not used. It is possible to divide THVDD voltage with upper 51K Ω and lower 9.1K Ω resistances.

Gate control for system Load SW (/SG)

This function controls '/SG' terminal.

//SG' terminal is connected with the LoadSW (recommended Renesas HAT1069C) between The SYS terminal and SYSTEM, and controls power supply to SYSTEM ON/OFF. And '/SG' terminal can be used for the control of an USB SW because this terminal becomes 'H' (OFF) during the USB detection.

- '/SG' = 'H' ('OFF') during the USB detection or Dead Battery Provision. 'H' voltage during 1. the USB detection can become the BAT voltage. Refer to 'Starting function after IN connected'. This function can be selected for 'Enable' or 'Disable' by SGCTL (ADR=02H). 2.
- 3 When the battery voltage is low, all current can be used for charging by stopping the current supply for SYSTEM with the LoadSW off. (After USB detection & SGCTL: Enable)

[/SG control in each condition about the IN and the BAT (Except for the USB detection, Dead Battery Provision and SGCTL: Disable)]

Input current limitation / Control between SYS and BAT

- USB detection (USB battery charging 1.2)

- Input current limitation(100mA/500mA/1000mA/1500mA/1800mA/limitless/Suspend) can be set by I2C.

-The current limit is dropped as the list for protection when SYS is shorted.

-When the total sum of the charge current and the system current is below the input limit current,

SYS terminal outputs IN voltage directly. When IN voltage is over 5.4V, SYS voltage is controlled to be below 5.4V. Capable for switching between V_{SYS45} and V_{IN} pass-through by I2C.

-IC switches the system power supply and the battery charge seamlessly within input current limitation.

(Design Guarantee)

Auto load current distribution control

Example of power control between the system supply and the battery charge Conditions : IN=5.0V is connected, I_{in max}=500mA, I_{chg}=350mA, Chargeable battery is connected.

- (1) The IC charges the battery at I_{cha}=350mA and supplies the system current(ISYS) within I_{in max}=500mA.
- (2) When the system current(I_{SYS}) increases and the total sum of I_{SYS} and I_{cho} reaches I_{in max}, the IC reduces the charge current.
- (3) When the system current (I_{SYS}) increases more and I_{SYS} exceeds I_{in_max}, V_{SYS} falls to V_{BAT}-V_{SYSR} and the battery supplies the load current to system through the Path SW. (IC attempts to sustain the system voltage no matter what causes it to drop.)

Over load detection

When IN voltage drops below V_{HL} , the input current is controlled as the current at the time regardless of the current limit setting. The OVERLOAD register (ADR:03H Bit0) indicate '1'.

This IC detects lack of current capability of power supply and prevents exceeded current from flowing from IN terminal.

* This detection operates when IN voltage < V_{HL} . In this mode, charging doesn't operate.

Input voltage detection

 $V_{UVLO} \leq V_{IN} \leq V_{OVP}$ and $V_{IN} \geq V_{BAT} + V_{InBat}$: Power supply from IN to SYS and charging are available. /POK =L.

Battery connection detection

THBATCON : 'Disable'

connection	Battery	Thermistor			
sequence	condition	Included in battery *1	on board *2	No use *3	
BAT -> IN	Normal	Starting from Default(00H)	Starting from Default(00H)	Starting from Default(00H)	
BAT -2 IN	Open Battery	Starting from Default(00H)	Starting from Default(00H)	Starting from Default(00H)	
IN -> BAT	Normal	Starting from Default(00H)	Forbidden		
*4	Open Battery	Default(00H)	Forbladen		

THBATCON : 'Enable'

connection	Battery	Thermistor			
sequence	condition	Included in battery *1	On board	No use	
	Normal	Starting from Default(00H)	Forbidden		
BAT -> IN	Open Battery	Starting from Default(00H)			
IN -> BAT	Normal	Starting from Default(00H)			
*4	Open Battery	Starting from Default(00H)			

*1 : TH voltage is in the charging range.

Charging doesn't starts with no battery because TH voltage is not in the charging range.

*2 : TH voltage is in the charging range.

*3 : PSE Control : 'Disable'

*4 : Don't start charging with no battery.

Battery connection is detected by battery voltage as follows:

- Battery voltage (V_{BAT}) > Charge start voltage (V_{start})

When register [THBATCON (ADR:02H)] is set to 'Enable', Battery connection is detected by battery voltage or TH terminal voltage as follows:

- Battery voltage (V_{BAT}) > Charge start voltage (V_{start})

- TH terminal voltage < Thermistor connection detect voltage (V_{THCON})

When thermistor is included in battery pack and this register is set to 'Enable', charging can also starts for an open battery.

When thermistor isn't included in battery pack, please don't set this register 'Enable'.

The list in the previous page shows the behavior with 3 kinds of thermistor setting and 2 kinds of battery.

<Thermistor> 'Included in battery' , 'On board' , 'No use' <Battery> 'Normal' , 'Open battery'

When THBATCON(ADR:02H) is 'Disable' setting (Default setting), the battery connection is detected by only battery voltage.

When IN is connected after 'battery connection', charging starts from 'Default (00H)' state for both 'Normal' and 'Open battery '.

When IN is connected before 'battery connection', charging starts for 'Normal' battery as same as when IN is connected after 'battery connection'. For 'Open battery ', the state stays at 'default(00H)' because it can't detect battery connection. And charging is forbidden with no battery when thermistor is 'On board' or 'No use'.

If THBATCON (ADR:02H) is set to 'Enable', battery connection is detected by either battery voltage or TH terminal voltage. Charging also starts for 'Open battery' as same as 'Normal'. So it is possible to charge for all batteries when thermistor is 'Included in battery'. When thermistor is 'On board' or 'No use', THBATCON (ADR:02H) 'Enable' setting is forbidden. And please don't charge with no battery.

R2A20056BM

Starting function after IN connected

We show starting function for each battery and USB port.

- (1) USB detection with Good Battery (V_{BAT}>V_{SYSSWOFF}) after IN connected
- (2) USB detection with Weak Battery (V_{BAT}<V_{SYSSWOFF}) after IN connected [Battery Charging 1.2 Port]
- (3) USB detection with Weak Battery after IN connected [Divided Port]
- (4) USB detection with no Battery after IN connected [Battery Charging 1.2 Port]
- (5) USB detection with no Battery after IN connected [Divided Port]

(2) USB detection with Weak Battery (V_{BAT}<V_{SYSSWOFF}) after IN connected

[Battery Charging 1.2 Port]

* Weak battery timer operates during Dead Battery Provision at SDP. If the battery voltage doesn't exceed V_{sysswoff} in T_{wchg} (typ. 40min.), it shifts into the suspend mode. (Refer to <u>'Dead Battery Provision'</u>.)

(3) USB detection with Weak Battery (V_{BAT} < $V_{SYSSWOFF}$) after IN connected

[Divided Port]

(4) USB detection with no Battery after IN connected

[Battery Charging 1.2 Port]

- * Weak battery timer operates during Dead Battery Provision at SDP.
 If the battery voltage doesn't exceed V_{sysswoff} in T_{wchg} (typ. 40min.), it shifts into the suspend mode. (Refer to <u>'Dead Battery Provision'</u>.)
- * Dead Battery Provision lasts when a weak battery is connected. USB re-detection starts when the battery becomes a good battery.
- * Please start charging after connecting a battery. Don't start charging with no battery.

(5) USB detection with no Battery after IN connected

* /SG doesn't change when a weak battery is connected. /SG becomes 'L' after the battery becomes a good battery.

* Please start charging after connecting a battery. Don't start charging with no battery.

Forced charge

After input power detection, forced charge starts for canceling the cutoff state of battery due to over-discharge. The forced charged current is the same as trickle charge current setting. Register (ADR=00H Bit6) is available for changing setting.

Charging starts even with an open battery by this function.

Please refer to Battery connection detection.

Trickle charge (0.1C constant current charge)

After input detection and battery detection, trickle charge starts when $V_{BAT} < V_{qcchgon}$ (Typ. 3.0V).

- When detecting $V_{BAT} \ge V_{qcchgon}$, the state shifts to quick charge mode.
- Trickle charge timer starts when trickle charge starts.
- After trickle charge timer expires, the state shifts to 'error mode 1' if V_{BAT} < V_{qcchgon}. However trickle timer stops when the battery voltage becomes below V_{start}. When BAT is shorted, this timer also stops. NOBAT(ADR=03H, Bit5) indicates detecting the battery voltage below V_{start}. After NOBAT='1' by detecting V_{BAT} \leq V_{start}, please stop charging with /CEN.
- When detecting $V_{BAT} \ge V_{ov}$ (Typ. 4.35V), the state shifts to 'error mode 1'.

Trickle charge setting is selectable between 0.1C and 0.2C by register (ADR=00H Bit4,5).

Quick charge (1.0C constant current charge)

Quick charge starts after detecting $V_{BAT} \ge V_{qcchgon}$.

- When detecting $V_{BAT} = V_{chq}$, the state shifts to CV (constant voltage) charge mode.
- Quick charge timer starts when quick charge starts.
- When detecting V_{BAT} < (V_{chgon} hysteresis voltage) (Typ. 2.9V), the state shifts to trickle charge mode.
- When detecting $V_{BAT} \ge V_{ov}$ (Typ. 4.35V), the state shifts to 'error mode 1'.

During quick charge, this IC monitors junction temperature and controls the current between 0.2C and 1.0C not to exceed T_{treg} .

The quick charge current is selectable between 0.5C and 1.0C by register (ADR=00H Bit 0).

Constant voltage charge

When detecting V_{BAT}=Charge Control voltage during quick charge mode, constant voltage charge starts.

- When the charge current falls below charge completion current during constant voltage charge, the state shifts to charge completion detection mode. If V_{BAT} V_{rechg} (Typ. 3.8V), the state shifts to charge completion state.
- When $V_{start} \le V_{BAT} < V_{rechg}$, the state shifts to 'error mode 1'. When $V_{BAT} < V_{start}$, the state shifts to Battery non-connection mode.
- The current (about 200µA) is discharged from BAT terminal during the charge completion detection mode. After this state, the next state is selected among Charge completion, Battery non-connection or Error-1 by the battery voltage.
- The charge control voltage is selectable from 4.00V to 4.20V (50mV steps) by register (ADR=00H Bit 1,2,3).

Timing of charge completion detection

Recharge function

After charge completion, battery voltage continues to be monitored. When $V_{BAT} < V_{rechg}$, recharge starts. Quick charge timer also starts to operate when recharge starts.

Timing of recharge judgment

LED control (/STAT)

Mode	LED	Blink cycle	
Default	OFF	-	
Forced charge	ON	-	
Trickle charge	ON	-	
Quick charge	ON	-	
High temp. charge-1	ON	-	
High temp. charge-2	ON	-	
Charge completion detection	OFF	-	
Charge completion	OFF	-	
Error-1 *1	Blink 1	128ms	ON Duty 50%
Error-2 *1	Blink 2	1024ms	ON Duty 50%
Error-3 *1	Blink 2	1024ms	ON Duty 50%
Battery non-connection	OFF	-	

*1:Refer to the Charge state diagram

Charge Current Setting

Charge Current is set by the external resistance with RICHG terminal. Here is the formula between RICHG and Ichg1.0C.

0.2C, 0.1C and 0.05C are 20%, 10% and 5% current of 1.0C. They can be set by register (ADR=00H).

The accuracy of each current is as the following list. Please use the current over 5mA.

Accuracy of each setting about charge current and charge completion current

Item	Quick Charge Current(I _{chg1.0C}) Setting						
item	500mA <u><</u> I _{chg1.0C}	I _{chg1.0C} =500mA	50mA <u><</u> I _{chg1.0C} <500mA				
I _{chg1.0C}	+-[10+(I _{chg1.0C} -500mA)/100mA] [%]	+-10[%]	+-[30+(50mA-I _{chg1.0C})/22.5mA] [%]				
I _{prechg0.2C}	+-[30+(I _{chg1.0C} -500mA)/100mA] [%]	+-30[%]	+-[40+(50mA-I _{chg1.0C})/45mA] [%]				
I _{prechg0.1C}	+-[30+(I _{chg1.0C} -500mA)/100mA] [%]	+- 30[%]	+-[40+(50mA-I _{chg1.0C})/45mA] [%]				
I _{fc0.2C}	+-[30+(I _{chg1.0C} -500mA)/100mA] [%]	+- 30[%]	+-[50+(50mA-I _{chg1.0C})/22.5mA] [%]				
I _{fc0.1C}	+-[30+(I _{chg1.0C} -500mA)/100mA] [%]	+- 30[%]	+-[50+(50mA-I _{chg1.0C})/22.5mA] [%]				
I _{fc0.05C}	+-[40+(I _{chg1.0C} -500mA)/100mA] [%]	+- 40[%]	+-[50+(50mA-I _{chg1.0C})/45mA] [%]				

[Design guarantee except for Ichg=500mA]

Chip temperature detection

During quick charge, junction temperature is monitored to limit charge current between 0.2C to 1.0C so that junction temperature may not exceed T_{trea} .

Thermal shutdown

When junction temperature reaches Tsd(default: 150degC) under charge, IC stops to supply from IN to SYS and the state moves to error mode.

Chip temperature detection and Thermal shutdown

	Register Map								
A	DR	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00H	R/W	-	TRICKLE FC			VCHG		ICHG	
01H	R/W	USBMD		TIMER			CTL3		/CEN2
02H	R/W	SYSN	IODE	IODE RST_USBDET THBATCON		SGCTL	FULMD	RECHG	PSE
03H	R	GDBAT	VBATH	NOBAT	FULL	TOUT	TSD	POK	OVERLOAD
04H	R	TOUT_WKB	TOUT_DCD USB				TEMP		
05H	R	0	0	0	0	STAT3	STAT2	STAT1	STAT0

03H State register (Read only)

	0	1	Condition of '1'
OVERLOAD	Not Overload	Overload	$V_{IN} < V_{HL}$
POK	Not Detect VIN	Detect V _{IN}	/POK='L'
TSD	IC chip temperature is Normal	Thermal protection work (IC stop)	T _i > T _{sd}
TOUT	Timer normal	Time out (Charging stop)	Timeout of Trickle or Quick Charge timer
FULL	Charging not complete	Charging complete	I _{chg} < I _{fc} (During CV)
NOBAT	Battery detected	No Battery	V _{BAT} < V _{start}
VBATH	Battery voltage normal	Battery over voltage	$V_{BAT} > V_{OV}$
GDBAT	Weak Battery	Good Battery	$V_{SYSSWOFF} < V_{BAT}$

05H<4> ~ <7> Keep 0 When charge FULL, FULL=0 and TOUT=0.

When Suspend, TSD=0,TOUT=0,FULL=0,VBATH=0,NOBAT=1.

04H TEMP register (Read only)

Bit2	Bit1	Bit0	TEMP
0	0	0	Temperature protection (Low Temp.)
0	0	1	Low rate charge (Low Temp.)
0	1	0	Normal charge
0	1	1	Low rate charge (High temp.)
1	0	0	Temperature protection (High temp.)
1	0	1	No Thermistor

04H USB detection result (Read only)

		•	
Bit5	Bit4	Bit3	USB
0	0	0	SDP (Standard Downstream Port)
0	0	1	CDP (Charging Downstream Port)
0	1	0	DCP (Dedicated Charging Port)
1	0	0	Divided Port 1
1	0	1	Divided Port 2
1	1	0	Divided Port 3
0	1	1	DP ERROR
1	1	1	DM ERROR

04H TOUT_WKB register (Read only)

Bit7	Weak Battery Timer
0	Normal
1	Time out

04H TOUT_DCD register (Read only)

Bit6	Connect Detection
0	Normal
1	Time out

05H State register (Read only)

- ,	• •			
STAT3	STAT2	STAT1	STAT0	State
0	0	0	0	Default
0	0	0	1	Forced charge
0	0	1	0	Trickle charge
0	0	1	1	Quick charge
0	1	0	0	High temp. charge-1
0	1	0	1	High temp. charge-2
0	1	1	0	Charge completion detection
0	1	1	1	Charge completion
1	0	0	0	Battery non-connection
1	0	0	1	Error-1
1	0	1	0	Error-2
1	0	1	1	Error-3

Register setting

*Default setting

	ICHG	Quick charge current	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADR=00H	ЮПО	0.5C	-	-	-	-	-	-	-	0
R/W		*1.0C	-	-	-	-	-	-	-	1
	VCHG	Charge control voltage	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Volite	4.00V	-	-	-	-	0	0	0	-
		4.05V	-	-	-	-	0	0	1	-
		4.10V	-	-	-	-	0	1	0	-
		4.15V	-	-	-	-	0	1	1	-
		*4.20V	-	I	-	-	1	0	0	-
			-	-	-	-	1	0	1	-
		No Use	-	-	-	-	1	1	0	-
			-	-	-	-	1	1	1	-
	FC	Charge completion current	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		0.05C	-	-	0	0	-	-	-	-
		*0.1C	-	-	0	1	-	-	-	-
		0.2C	-	-	1	0	-	-	-	-
		No Use	-	-	1	1	-	-	-	-
		Trickle charge current	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		*0.1C	-	0	-	-	-	-	-	-
		0.2C	-	1	-	-	-	-	-	-

	/CEN2	Charger control *1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADR=01H		*Enable	-	-	-	-	-	-	-	0
R/W		Disable	-	-	-	-	-	-	-	1
	CTL3	Input current limitation *2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0.20	*100mA	-	-	-	-	0	0	0	-
		500mA	-	-	-	-	0	0	1	-
		1000mA	-	-	-	-	0	1	0	-
		1500mA	-	-	-	-	0	1	1	-
		1800mA	-	-	-	I	1	0	0	-
		Limitless	-	-	-	-	1	0	1	-
		No Use	-	-	-	I	1	1	0	-
		SUSPEND	-	-	-	-	1	1	1	-
	TIMER	Timer control	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Disable(reset)	-	0	0	0	-	-	-	-
		*Enable(normal)	-	0	0	1	-	-	-	-
		Enable(slow x 2) *3	-	0	1	0	-	-	-	-
		Enable(slow x 4) _{*4}	-	0	1	1	-	-	-	-
		Enable(count stop) _{*5}	-	1	0	0	-	-	-	-
			-	1	0	1	-	-	-	-
-		No Use	-	1	1	0	-	-	-	-
			-	1	1	1	-	-	-	-
	USBMD	USB control select *2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		*Depend on Terminals	0	-	-	-	-	-	-	-
		Depend on Register	1	-	-	-	-	-	-	-

Register setting

	PSE	PSE control	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADR=02H		*Enable	-	-	-	-	-	-	-	0
R/W		Disable	-	-	-	-	-	-	-	1
	RECHG	Recharge control	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		*Enable	-	-	-	-	-	-	0	-
		Disable	-	-	-	-	-	-	1	-
	FULMD	Operation after charge completion	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	-	*Stop charge	-	-	-	-	-	0	-	-
		Continue to charge(inform FULL)	-	-	-	-	-	1	-	-
	SGCTL	/SG control	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		*Enable	-	-	-	-	0	-	-	-
		Disable	-	-	-	-	1	-	-	-
	THBATCON	Battery detection by TH terminal	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		*Disable	-	-	-	0	-	-	-	-
		Enable	-	-	-	1	-	-	-	-
	RST_USBDET	USB detection reset	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		*Disable	-	-	0	-	-	-	-	-
		Enable (Reset)	-	-	1	-	-	-	-	-
	SYSMODE	SYS Output MODE *1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		* V _{IN} pass-through	0	0	-	-	-	-	-	-
			0	1	-	-	-	-	-	-
		V _{SYS45} (Typ. 4.5V)	1	0	-	-	-	-	-	-
		V _{IN} pass-through	1	1	-	-	-	-	-	-

*1) When /CEN=L and /CEN2(register)='0', Charge operation is enable.

[Truth Table]

/CEN	/CEN2	Charge Operation
Lo	0	Charge start
Lo	1	Charge stop
Hi	0	Charge stop
Hi	1	Charge stop

- *2) When USBMD=0, Terminal setting(USUP) is available. When USBMD=1, Register(CTL3) is available and the suspend function by Weak battery timer is unavailable. Re-connect with IN when going into the suspend mode by Weak battery timer.
- *3) Slow: 2 times of normal mode(Trickle charge timer=120min., Quick charge timer=600min , Weak battery timer = 80min.)
- *4) Slow: 4 times of normal mode(Trickle charge timer=240min., Quick charge timer=1200min , Weak battery timer = 160min.)
- *5) Count stop : Timer is suspended.(Not reset)
- *6) When RST_USB=1, the USB detecting is in reset and /SG output is 'L'. When RST_USB=0, the USB detecting will restart. During the USB detection, /SG is 'H'. After USB detection, /SG output is determined by the SG function. USB re-detection by RST_USBDET can reset the suspend by USB detecting error.
- *7) The SYS voltage setting can be set by the SYSMODE register.
- * When V_{IN} < 2.0V, the register is reset. (This value is design guarantee).

I²C BUS Line Characteristics

Symbol	Item	Min.	Max.	Unit
f _{SCL}	SCL clock frequency	0	400	kHz
t _{BUF}	Bus free time between STOP condition and START condition	1.3	-	μs
t _{hd:sta}	START condition hold time (After this period, the first clock pulse is generated)	0.6	-	μs
t _{LOW}	SCL low period	1.3	-	μs
t _{HIGH}	SCL high period	0.6	-	μs
t _{SU:STA}	START condition setup time	0.6	-	μs
t _{HD:DAT}	Data hold time	0	0.9	μs
t _{SU:DAT}	Data setup time	100	-	ns
t _R	Rise time (SDA and SCL)	-	300	ns
t _F	Fall time (SDA and SCL)	-	300	ns
t _{su:sto}	STOP condition setup time	0.6	-	μs
C _b	Bus line capacitive load	-	400	pF

Note : Above values are specified by VIHmin and VILmax.

I²C Timing Chart

Serial communication format

1. Start condition

Set SDA from High to Low when SCL=High.

2. Slave address

3. Stop condition

Set SDA from Low to High when SCL=High.

4. Read/Write code

Write code : SDA=Low Read code : SDA=High

5. Write mode :Data input from Master to R2A20056

R2A20056 will respond with an Acknowledge '0' when;

- Master inputs Slave address (8bit) and Write code after start condition
- Master inputs Register address (8bit)
- Master inputs Write data (8bit)

Lastly, Master will input Stop condition.

(Solid line: From Master to R2A20056, Dotted line: From R2A20056 to Master)

6. Read mode :Data output from R2A20056 to Master

When Master inputs Slave address(8bit) and Write code after start condition, R2A20056 responds with an Acknowledge'0'. And then, when Master inputs Register address(8bit), R2A20056BM responds with an Acknowledge'0'. And then, when Master inputs Start condition, Slave address, and Read code, R2A20056 responds with an Acknowledge'0' and outputs Read data.

Lastly, Master inputs Acknowledge'1'(or opens bus line) and Stop condition.

(Solid line: From Master to R2A20056, Dotted line: From R2A20056 to Master)

Serial communication format

[Pull-down resistance with 'SCL' and 'SDA' terminals]

There are pull-down resistances with 'SCL' and 'SDA' terminals in this IC.

Item		Unit		
nem	Min.	Тур.	Max.	Unit
pull-down Resistance of SCL,SDA	500	700	900	KΩ

Please set the pull-up resistances to satisfy the calculating formula.

 $V_{pup}[V]$: Pull-up voltage

 $R_{up}[K\Omega]$: Pull-up resistance

 $R_{mos}[K\Omega]$: ON resistance of NMOS in HOST

[The circuit around SDA, SCL terminals]

< 'H' voltage >

$$V_{H} = V_{pup} \times \frac{R_{dwn}}{R_{up} + R_{dwn}}$$

 R_{dwn} is affected lightly because of $R_{up} \ll R_{dwn}$.

< 'L' voltage>

$$V_{L} = V_{pup} \times \frac{\left(R_{mos} / / R_{dwn}\right)}{R_{up} + \left(R_{mos} / / R_{dwn}\right)}$$

 R_{dwn} is affected lightly because of $R_{mos} \ll R_{dwn}$.

[I2C communication notice]

If 'L' signal is input to 'SCL' and 'SDA' terminals before normal I2C signal, this IC may not accept this I2C signal because of detecting 'Start condition'. When the pull-up voltage is turned off during continuing to supply voltage to the IN terminal, the 'L' signal may be miss-detected as the start condition. Please take measures as follows:

Resending the command in the error Please resend the command when ACK is not returned normally.

Timing adjust when turning off the pull-up power supply Please make 'SCL' fall faster than 'SDA' when pull-up power is turned off while voltage is supplied to the IN terminal.

Typical Application Circuit

Port is detected by 'DP' and 'DM' terminals. Set the port setting as the desired current limit value if not used. Usage Example) SDP : 20Kohm pull-down resistance with 'DP' and 'DM' DCP : Connect 'DP' and 'DM' to each other

Unit:mm

Usage Note

Please do not connect 'SYS' terminal to GND.

If 'SYS' terminal is connected with GND in battery connection mode, large currents flow from 'BAT' to 'SYS' through the body diode in MOS-FET between BAT and SYS. If large current continues to flow, it causes power dissipation in the IC to increase. The IC will then heat up and may damage the IC. The heat may also cause the IC to burn.

If the battery completion is detected at 'FULMD'='1' (ADR=02H Bit=2), 'FULL' (ADR=03H Bit=4) becomes '1' but charging continues. Timer also continues after 'FULL' becomes '1'.So charging stops after quick charge timer ends even at 'FULMD'='1'. Timer can be stopped by 'COUNT STOP' (ADR=01H Bit 4~6).

Trickle timer stops when the battery voltage is below V_{start}. When BAT is shorted, this timer also stops. NOBAT(ADR=03H, Bit5) indicates detecting the battery voltage below V_{start}. After NOBAT='1' by detecting V_{BAT} \leq V_{start}, please stop charging with /CEN.

Please do not apply voltage and current exceeding the absolute maximum ratings. It may damage the IC.

Please use this device within the power dissipation not exceeding the allowable range of this package.

When the charging starts with no battery at low V_{IN} voltage, it has possibilities for oscillation to occur. Please don't start to charge with no battery.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by vou or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc. 2880 Scott Bouldsand Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804

 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Disseldorf, Germany Tel: +49-211-65030, Fax: +44-11650-31327

 Renesas Electronics China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +480-2435-1155, Fax: +480-21-0827-7679

 Renesas Electronics (Shanghal) Co., Ltd. Unit 204, 205, AZIA Center, No.1223 Luijazui Fing Rd., Pudong District, Shanghai 200120, China Tel: +860-2457-1518, Fax: +862-2467-7898

 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852-2886-9022/9044

 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit fi06-r02 Hylitux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit fi06-r02 Hylitux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

 Renesas Electronics Taiwan Co., Ltd. 90 Bendemeer Road, Unit fi06-r02 Hylitux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

 Renesas Electronics Kalaysia Sch..Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Se