

Product Termination Notification

Product Group: SIL/Tue Jul 26, 2022/PTN-SIL-015-2022-REV-0

Conversion to Copper (Cu) Wire - SQS484EN

For further information, please contact your regional Vishay office.

CONTACT INFORMATION

Americas	Europe	Asia
Vishay Siliconix	VISHAY Europe Sales GmbH	Vishay Intertechnology Asia Pte. Ltd
2565 Junction Ave	DrFelix-Zandman-Platz 1	37A Tampines Street 92 #07-01
-	-	-
San Jose CA United States 95134	Selb Germany 95100	Singapore Singapore 528886
Phone: 4089705799	Phone: 49 9287 710	Phone: 65 6788 6668
Fax: 4089705799	Fax: 49 9287 70435	Fax: 65 6788 0988
business-americas@vishay.com	business-europe@vishay.com	business-asia@vishay.com

Description of Change: The affected part number listed in this notification will be converted to a Copper wire material set. The new ordering code is SQS484CENW-T1_GE3, which has the exact same product performance and fit as SQS484EN-T1_GE3. In addition, the SQS484CENW-T1_GE3 package also includes pins with wet-able flanks. This feature promotes improved solder coverage and solder filet shape at the lead tips. The outer most dimensions are unchanged and the same PCB land pattern is required. There will be no change to the wafer fab or assembly location. There will be no changes to the parameters on the datasheet (reference: SQS484CENW Doc # 77038, Rev.B) - see included datasheet comparison for details.

Classification of Change: Standardization of materials

Expected Influence on Quality/Reliability/Performance: None

Part Numbers/Series/Families Affected: SQS484EN-T1_GE3, SQS484EN-T1_BE3,

Vishay Brand(S): Vishay Siliconix

Time Schedule:

Last Time Buy Date: Wed Aug 23, 2023 Last Time Ship Date: Fri Feb 23, 2024

Sample Availability: Qualified samples of replacement product are available immediately

Product Identification: SQS484CENW-T1_GE3

Qualification Data: AEC Q101 qualification data of replacement product is available. Qualification PPAP is available now.

This PTN is considered approved, without further notification, unless we receive specific customer concerns before Mon Jul 17, 2023 or as specified by contract.

Issued By: Lance Gurrola, business-americas@vishay.com

Affected Part Number AEC Q101 Qualified Package Type Process Technology Bondwire Material 100% Rg & UIS Tested

SQS484EN Yes PPAK 1212-8 300M cells/in² Gold (Au) Yes

Test Conditions	Limit	Units
	40	٧
	±20	V
TC = 25°C	16	Α
TC = 125°C	16	А
	16	Α
	64	Α
L = 0.1mH	30	Α
r = 0.1mu	45	mJ
TC = 25°C	62	W
TC = 125°C	20	w
	-55 to +175	°C
PCB Mount	81	°C/W
	2.4	°C/W
	300	86

Test Conditions		MIN	TYP	MAX	Units
VGS=0V, ID=250uA		40			٧
VDS=VGS, ID=250uA		1.5	2	2.5	٧
VDS=0	OV, VGS=±20V			±100	nA
VGS=0V	VDS=40V			1	uA
VGS=0V	VDS=40V, Tj=125°C			50	uA
VGS=0V	VDS=40V, Tj=175°C			150	uA
VGS=10V	VDS≥5V	20			Α
VGS=10V	ID=16.4A		0.0080	0.0090	Ω
VGS=10V	ID=16.4A, Tj=125°C			0.0230	Ω
VGS=10V	ID=16.4A, Tj=175°C			0.0240	Ω
VGS=4.5V	ID=16.4A		0.0090	0.0100	Ω
VDS=:	15V, ID=16.4A		77		S
			1484	1855	
VGS=0V	VDS=25V, f=1MHz		216	270	pF
			84	105	
			25.5	39	
VGS=10V	VDS=20V, ID=16.2A		4.8		nC
VG3=10V	VD3-20V, ID-10.2A		4		iic
f=1mHz		5	10	20	Ω
· VDD=20V, RL=2Ω, ID=10A, Vgen=4.5V, Rg=1Ω			8	12	
			14	21	
			48	72	ns
			20	30	
				64	Α
If=10A VGS=0V			0.8	1.2	V
					ns
					nC
					ns
					ns
					Α

Replacement Part Number AEC (1101 Qualified Package Type Process Technology Bondwire Material 100% Rg and UIS Tested Datasheet Rev SQS484CENW Yes PPAK 1212-8W 300M cells/in² Copper (Cu) Yes B

Symbol	Test Conditions	Limit	Units
VDS		40	V
VGS		±20	V
ID	TC = 25°C	16	А
ID	TC = 125°C	16	A
IS		16	A
IDM		64	A
IAS	L = 0.1mH	25	A
EAS	L = 0.1mm	31.2	mJ
PD	TC = 25°C	62.5	W
PD	TC = 125°C	20	W
TJ		-55 to +175	°C
RthJA	PCB Mount	81	°C/W
RthJC		2.4	°C/W
		260	°C

	Test	Conditions	MIN	TYP	MAX	Units
VDS	VGS=0V, ID=250uA		40			٧
VGS(th)	VDS=VGS, ID=250uA		1.5	2	2.5	٧
IGSS	VDS=0V, VGS=±20V				±100	nA
	VGS=0V	VDS=40V			1	uA
IDSS	VGS=0V	VDS=40V, Tj=125°C			50	uA
	VGS=0V	VDS=40V, Tj=175°C			150	uA
ID(ON)	VGS=10V	VDS≥-5V	20			Α
	VGS=10V	ID=10A		0.0081	0.0095	Ω
RDS(on)	VGS=10V	ID=10A, Tj=125°C			0.0152	Ω
	VGS=10V	ID=10A, Tj=175°C			0.0190	Ω
	VGS=4.5V	ID=10A		0.0095	0.0110	Ω
gfs	VDS=1	5V, ID=10A		62		S
Ciss	VGS=0V	VDS=25V, f=1MHz		1565	2350	
Coss				193	290	pF
Crss				68	102	
Qg		VDS=20V, ID=4A		27	40	
Qgs	VGS=10V			5		nC
Qgd	VG3=10V	VD3-20V, ID-4A		3.6		110
Rg	f=1mHz		3.6	8	12.8	Ω
td(on)			5.0	7.8	11.7	
tr				2.4	3.6	
td(off)	VDD=20V, RL=5Ω, I	D=4A, Vgen=10V, Rg=1Ω		38	57	ns
tf	†			7.2	10.8	
ISM					64	А
VSD	I _F =10	A VGS=0V		0.82	1.1	٧
trr				18	36	ns
Qrr	I _{F=S} A, di/dt=100A/us			12	24	nC
ta				11		ns
tb				6		ns
Internect				-1.3	-3	А

Type of Change	Risk
None	None
Test standardization	Very low; las is 2x the rated current of 16A
Test standardization	Very low; Eas is calculated from las
None	None

None	None
Type of Change	Risk
None	None
	Very low; Rds(on) is lower at higher temperatures which
Limit increase	is more improtant.
Improvement	None
Improvement	None
Limit increase	Very low; typical RDS(ON) values are similar
Test standardization	None
These are not tested	Very low. Switching speeds are not impacted
parameters so no	Very low. Switching speeds are not impacted
limit changes. Data	Very low. Switching speeds are not impacted
simply reflects the	Very low. Switching speeds are not impacted
lot to lot variation in	Very low. Switching speeds are not impacted
the characterization	
data.	Very low. Switching speeds are not impacted
Tighter test spec	Very low. Switching speeds are not impacted
No actual change in the device only test condition standardization	Very low. Switching speeds are measured under differe conditions, but overall AC parameters are very similar resulting in close matching of switching performance.
None	None
Tighter test spec	None
Additional chracterization data not previosuly	None
	None
	None
documented	None
1	None