

GTVA212701FA

Thermally-Enhanced High Power RF GaN on SiC HEMT 270 W, 48 V, 2110 – 2200 MHz

Description

The GTVA212701FA is a 270-watt GaN on SiC high electron mobility transistor (HEMT) for use in the 2110 to 2200 MHz frequecy band. It features input matching, high efficiency, and a thermally-enhanced earless package.

Package Types: H-87265J-2

Features

- GaN on SiC HEMT technology
- Input matched
- Typical pulsed CW performance (class AB), 2180 MHz, 48 V, 10 μs pulse width, 10% duty cycle
 Output power P_{3dB} = 300 W
 - Drain efficiency = 68.5%
 - Gain = 17.5 dB
- Human Body Model Class 1B (per ANSI/ESDA/ JEDEC JS-001)
- Capable of handling 10:1 VSWR @ 48 V, 56.2 W (WCDMA) output power
- Low thermal resistance
- Pb-free and RoHS-compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in Wolfspeed test fixture)

V_{DD} = 48 V, I_{DQ} = 320 mA, 56.2 W average output power, *f* = 2180 MHz. 3GPP WCDMA signal: 3.84 MHz channel bandwidth, 10 dB PAR at 0.01% CCDF.

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Gain	G _{ps}	18	19	_	dB
Drain Efficiency	η _D	35	38	_	%
Adjacent Channel Power Ratio	ACPR	_	-29	-26	dBc
Output PAR @ 0.01% CCDF	OPAR	6.4	7.0	_	dB

Note:

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

Rev. 04.2, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

DC Characteristics

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source Breakdown Voltage	V _{BR(DSS)}	150	—	-	V	V _{GS} = -8 V, I _D = 10 mA
Drain-source Leakage Current	I _{DSS}	—	—	4.5	mA	$V_{GS} = -8 V, V_{DS} = 10 V$
Gate Threshold Voltage	V _{DSX(th)}	-3.8	-3.0	-2.3	V	V _{DS} = 10 V, I _D = 32 mA

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain Operating Voltage	V _{DD}	0	_	50	V	
Gate Quiescent Voltage	V _{GS(Q)}	-3.4	-3.0	-2.5	v	V _{DS} = 48 V, I _D = 320 mA

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	125	
Operating Voltage	V _{DD}	55	V
Gate-Source Voltage	V _{GS}	-10 to +2	
Gate Current	Ι _G	32	mA
Drain Current	I _D	12	А
Junction Temperature	Tj	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics ($T_{CASE} = 70^{\circ}c$, 56.2 W (CW), 48 V, $I_{DQ} = 320$ mA, 2170 MHz)

Characteristic	Symbol	Value	Unit
Thermal Resistance	$R_{ ext{ hetaJC}}$	1.1	°C/W

Ordering Information

Type and Version	Order Code	Package	Shipping
GTVA212701FA V2 R0	GTVA212701FA-V2-R0	H-87265J-2, single-ended, earless flange	Tape & Reel, 50 pcs
GTVA212701FA V2 R2	GTVA212701FA-V2-R2	H-87265J-2, single-ended, earless flange	Tape & Reel, 250 pcs

Rev. 04.2, 2022-1-27

GTVA212701FA

Figure 1. Single-carrier WCDMA Drive-up

 $[\]begin{aligned} \mathbf{V}_{\mathrm{DD}} = 48 \ \mathbf{V}, \ \mathbf{I}_{\mathrm{DQ}} = 320 \ \mathrm{mA}, \ f = 2170 \ \mathrm{MHz} \\ 3\mathrm{GPP} \ \mathrm{WCDMA} \ \mathrm{signal}, \ 10 \ \mathrm{dB} \ \mathrm{PAR}, \\ 3.84 \ \mathrm{MHz} \ \mathrm{bandwidth} \end{aligned}$

 $\label{eq:V_DD} \begin{array}{l} V_{\text{DD}} = 48 \text{ V}, \ \text{I}_{\text{DQ}} = 320 \text{ mA}, \\ P_{\text{OUT}} = 47.5 \text{ dBm} \\ \text{3GPP WCDMA signal, 10 dB PAR} \end{array}$

 $\label{eq:V_DD} \begin{array}{l} V_{\text{DD}} = 48 \ \text{V}, \ \text{I}_{\text{DQ}} = 320 \ \text{mA}, \\ P_{\text{OUT}} = 47.5 \ \text{dBm} \\ \end{array} \\ \begin{array}{l} \text{3GPP WCDMA signal, 10 \ \text{dB PAR}} \end{array}$

 $V_{DD} = 48 \text{ V}, \text{ I}_{DQ} = 320 \text{ mA}$

3

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Typical Performance (cont.)

Figure 5. CW Performance at Various V_{DD}

 I_{DQ} = 320 mA, f = 2170 MHz

 $V_{DD} = 48 \text{ V}, \text{ I}_{DQ} = 320 \text{ mA}$

Load Pull

Pulsed CW signal: – 10 µsec, 10% duty cycle; V_{DD} = 48 V, I_{DQ} = 300 mA

		P _{3dB}									
Class AB Max Output Power			Max D	rain Efficie	ency						
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]
2110	6.38 – j6.61	3.01 – j3.1	17.28	55.72	373.2	67.5	3.01 - j1.41	18.57	54.74	297.6	73.9
2170	4.78 – j4.24	3.01 – j3.1	17.37	55.71	372.3	68.8	3.13 - j1.84	18.55	54.78	300.7	73.2
2200	4.09 – j4.3	3.01 – j3.1	16.97	55.80	380.2	65.6	3.08 - j1.97	18.6	54.88	307.6	74.7

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

GTVA212701FA

Evaluation Board, 2110 to 2200 MHz

Evaluation Board Part Number	LTN/GTVA212701FA-V2
PCB Information	Rogers 4350, 0.508 mm [.020"] thick, 2 oz. copper, ε _r = 3.66

Find Gerber files for this reference circuit on the Wolfspeed Web site at www.wolfspeed.com/RF

Reference circuit assembly diagram (not to scale)

Rev. 04.2, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Components Information

Component	Description	Manufacturer	P/N
In			
C101	Capacitor, 2 pF	ATC	ATC800A2R0BT250XT
C102, C104, C105, C106	Capacitor, 10 µF	Taiyo Yuden	UMK325C7106MM-T
C103	Capacitor, 0.2 pF	ATC	ATC800A0R2BT250XT
C107	Capacitor, 15 pF	ATC	ATC800A150GT250XT
C108	Capacitor, 12 pF	ATC	ATC800A120JT250XT
C109, C110	Capacitor, 24 pF	ATC	ATC800A240JT250XT
R101, R102	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V
R103	Resistor, 10 ohms	Yageo	RC0805JR-0710RL
Out			
C201	Capacitor, 1.5 pF	ATC	ATC600S1R5CT250XT
C202, C210	Capacitor, 0.5 pF	ATC	ATC600S0R5CT250XT
C203	Capacitor, 1.0 pF	ATC	ATC600S1R0CT250XT
C204	Capacitor, 6.8 pF	ATC	ATC800A6R8CT250XT

Bias Sequencing

Bias On

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias Off

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage 4. Turn-off gate voltage

Pinout Diagram (top view)

Rev. 04.2, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Package Outline Specifications – Package H-87265J-2

Diagram Notes—unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994
- 2. Primary dimensions are mm; alternate dimensions are inches
- 3. All tolerances ± 0.127 [.005]
- 4. Pins: D drain; G gate; S source
- 5. Lead thickness: 0.13 ± 0.05 mm [.005 ± .002 inch]
- 6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact <u>RFSales@wolfspeed.com</u>

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 04.2, 2022-1-27

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.