FDFS6N548

Integrated N-Channel POWERTRENCH® MOSFET and Schottky Diode

Description

The FDFS6N548 combines the exceptional performance of ON Semiconductor's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO–8 package.

This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low on-state resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Features

- Max $r_{DS(on)} = 23 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7 \text{ A}$
- Max $r_{DS(on)} = 30 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 6 \text{ A}$
- $V_F < 0.45 \text{ V} @ 2 \text{ A}$ $V_F < 0.28 \text{ V} @ 100 \text{ mA}$
- Schottky and MOSFET Incorporated into Single Power Surface Mount SO–8 Package
- Electrically Independent Schottky and MOSFET Pinout for Design Flexibility
- Low Miller Charge

Application

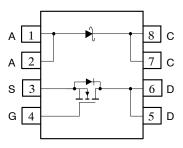
• DC/DC Conversion

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Pa	Value	Unit	
V _{DS}	Drain-to-Source Vo	30	V	
V _{GS}	Gate-to-Source Vo	±20	V	
I _D	Drain Current Continuous (Note 1a)		7	Α
		Pulsed	30	
P_{D}	Power Dissipation	Dual Operation	2	W
		Single Operation (Note 1a)	1.6	
E _{AS}	Drain-Source Avala	12	mJ	
V _{RRM}	Schottky Repetitive	30	V	
Io	Schottky Average F	2	Α	
T _J , T _{STG}	Operating and Stora Temperature Range	-55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

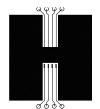

Symbol	Parameter	Value	Unit
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	40	°C/W

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

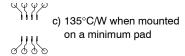
See detailed ordering and shipping information on page 6 of this data sheet.


FDFS6N548

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions Min		Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS				•		
BV _{DSS}	Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
$\Delta BV_{DSS}/ \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C			22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 24 V				1	μА
		V _{GS} = 0 V, V _{DS} = 24 V, T _J = 125°C				250	1
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V				±100	nA
ON CHARA	CTERISTICS						
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 2$	250 μΑ	1.2	1.8	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate-to-Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		-5		mV/°C	
R _{DS(on)}	Drain-to-Source On-Resistance	V _{GS} = 10 V, I _D = 7 A			19	23	mΩ
	Ī	V _{GS} = 4.5 V, I _D :	= 6 A		23	30	-
	Ī	V _{GS} = 10 V, I _D = 7 A,	T _J = 125°C		26	31	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 7 A			20		S
DYNAMIC (CHARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz			525	700	pF
C _{oss}	Output Capacitance		•		100	133	pF
C _{rss}	Reverse Transfer Capacitance		•		65	100	pF
R _g	Gate Resistance	f = 1 MHz			0.8		Ω
SWITCHING	G CHARACTERISTICS						
t _{d(on)}	Turn-On Delay Time	V_{DD} = 15 V, I_D = 7 A, V_{GS} = 10 V, R_{GEN} = 6 Ω			6	12	ns
t _r	Rise Time				2	10	ns
t _{d(off)}	Turn-Off Delay Time				14	25	ns
t _f	Fall Time		ŀ		2	10	ns
Q _{g(TOT)}	Total Gate Charge at 10 V	V _{DS} = 15 V, I _D = 7 A, V _{GS} = 10 V			9	13	nC
Q _{gs}	Gate-to-Source Gate Charge				1.5		nC
Q_{gd}	Gate-to-Drain "Miller" Charge				2		nC
	URCE DIODE CHARACTERISTICS						
V_{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 7 A (Note 2)			0.90	1.25	V
t _{rr}	Reverse Recovery Time	I _F = 7 A, di/dt = 100 A/μs			23	35	ns
Q _{rr}	Reverse Recovery Charge				14	21	nC
SCHOTTKY	DIODE CHARACTERISTICS						
V _R	Reverse Breakdown Voltage	I _R = −1 mA		-30			V
I _R	Reverse Leakage	V _R = -10 V	T _J = 25°C		-39	-250	μΑ
			T _J = 125°C		-18		mA
V _F	Forward Voltage	I _F = 100 mA	T _J = 25°C		225	280	mV
			T _J = 125°C		140		1
		I _F = 2 A	T _J = 25°C		364	450	1
	1		T _J = 125°C		290		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 78°C/W when mounted on a 0.5 in² pad of 2 oz copper

b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%. 3. Starting T_J = 25°C, L = 1 mH, I_{AS} = 5.0 A, V_{DD} = 27 V, V_{GS} = 10 V.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

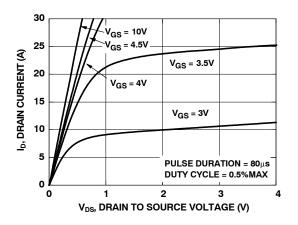


Figure 1. On Region Characteristics

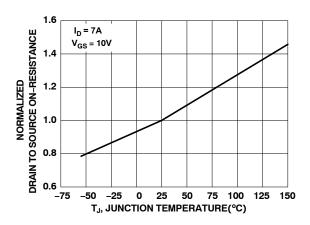


Figure 3. Normalized On–Resistance vs. Junction Temperature

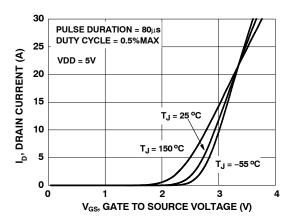


Figure 5. Transfer Characteristics

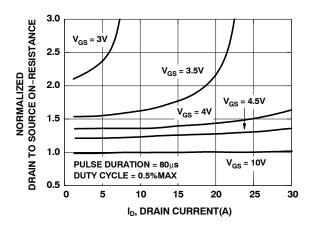


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

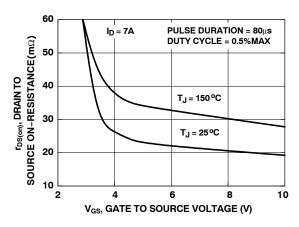


Figure 4. On-Resistance vs. Gate-to-Source Voltage

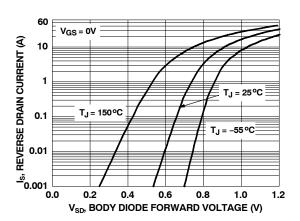


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

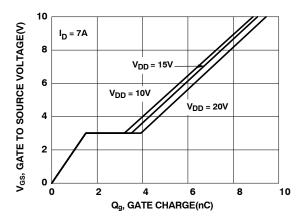


Figure 7. Gate Charge Characteristics

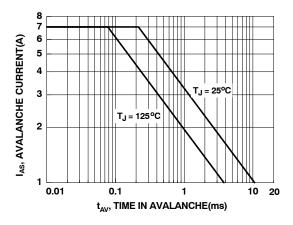


Figure 9. Unclamped Inductive Switching Capability

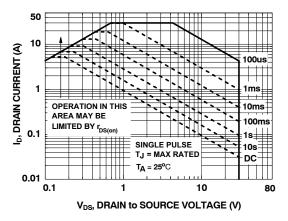


Figure 11. Forward Bias Safe Operating Area

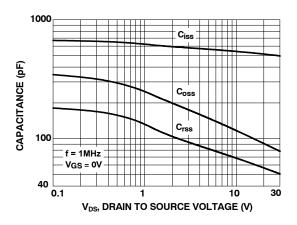


Figure 8. Capacitance vs. Drain-to-Source Voltage

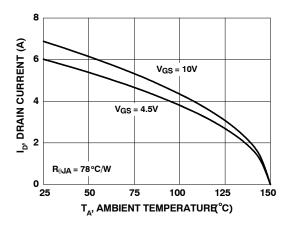


Figure 10. Maximum Continuous Drain Current vs. Ambient Temperature

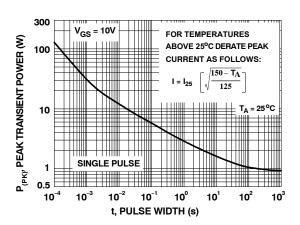
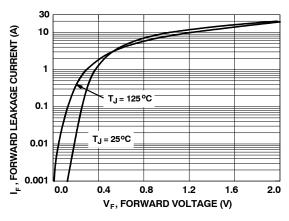



Figure 12. Single Pulse Maximum Power Dissipation

FDFS6N548

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

T_J = 125°C

UNDO DE STORY

T_J = 125°C

T_J = 25°C

V_R, REVERSE VOLTAGE (V)

Figure 13. Schottky Diode Forward Characteristics

Figure 14. Schottky Diode Reverse Characteristics

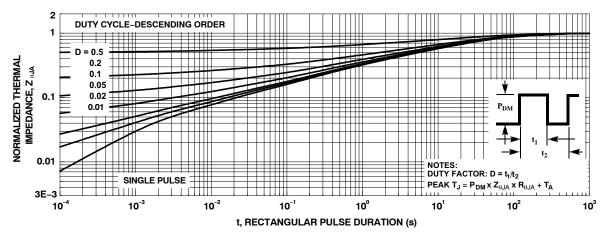
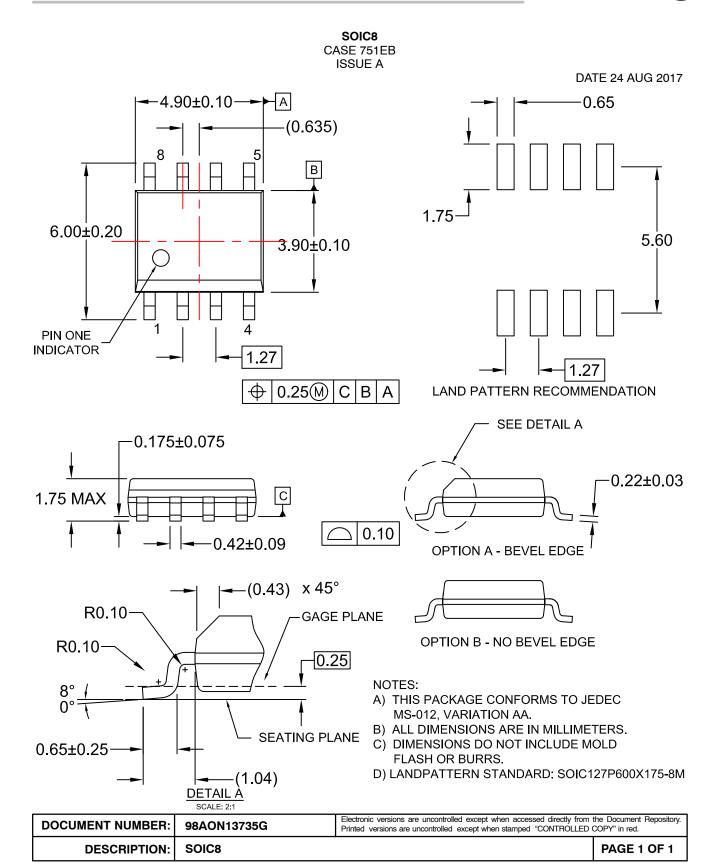



Figure 15. Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping [†]	
FDFS6N548	FDFS6N548	SO-8	330 mm	12 mm	2500 / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales