

L6387E

High voltage high and low-side driver

Datasheet - production data

Features

- High voltage rail up to 600 V
- dV/dt immunity ± 50 V/nsec in full temperature range
- Driver current capability
 - 400 mA source
 - 650 mA sink
- Switching times 50/30 nsec rise/fall with 1 nF load
- CMOS/TTL Schmitt trigger inputs with hysteresis and pull-down
- Internal bootstrap diode
- Outputs in phase with inputs
- Interlocking function

Applications

- Home appliances
- Motor drivers
 - DC, AC, PMDC and PMAC motors
- Lighting applications
- Industrial applications and drives
- Induction heating
- HVAC
- Factory automation
- Power supply systems

October 2015

DocID13990 Rev 4

Description

The L6387E is a simple and compact high voltage gate driver, manufactured with the BCD[™] "offline" technology, and able to drive a half-bridge of power MOSFET or IGBT devices. The high-side (floating) section is enabled to work with voltage rail up to 600 V. Both device outputs can independently sink and source 650 mA and 400 mA respectively and cannot be simultaneously driven high thanks to an integrated interlocking function.

The L6387E device provides two input pins and two output pins and guarantees the outputs toggle in phase with inputs. The logic inputs are CMOS/TTL compatible to ease the interfacing with controlling devices.

The L6387E features the UVLO protection on the V_{CC} supply voltage and integrates the bootstrap diode, allowing a more compact and reliable solution.

The device is available in a DIP-8 tube and SO-8 tube and tape and reel packaging options.

This is information on a product in full production.

1/17

Contents

1	Block diagram	. 3
2	Electrical data	. 4
	2.1 Absolute maximum ratings	. 4
	2.2 Thermal data	. 4
	2.3 Recommended operating conditions	. 4
3	Pin connection	. 5
4	Electrical characteristics	. 6
	4.1 AC operation	. 6
	4.2 DC operation	. 6
5	Input logic	. 8
6	Bootstrap driver	. 9
	C _{BOOT} selection and charging	. 9
7	Typical characteristic	11
8	Package information	12
	8.1 DIP-8 package information	12
	8.2 SO-8 package information	14
9	Order codes	16
10	Revision history	16

1 Block diagram

Figure 1. Block diagram

2 Electrical data

2.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit					
V _{OUT}	Output voltage	-3 to V _{BOOT} -18	V					
V _{CC}	Supply voltage	- 0.3 to +18	V					
V _{BOOT}	Floating supply voltage	-1 to 618	V					
V _{hvg}	High-side gate output voltage	-1 to V _{BOOT}	V					
V _{lvg}	Low-side gate output voltage	-0.3 to V _{CC} +0.3	V					
Vi	Logic input voltage	-0.3 to V _{CC} +0.3	V					
$\mathrm{dV}_{\mathrm{OUT}}/\mathrm{d}_{\mathrm{t}}$	Allowed output slew rate	50	V/ns					
P _{tot}	Total power dissipation (T_J = 85 °C)	750	mW					
Тj	Junction temperature	150	°C					
Τ _s	Storage temperature	-50 to 150	°C					
ESD	Human body model	2	kV					

Table 1. Absolute maximum ratings

2.2 Thermal data

Table 2. Thermal data

Symbol	Parameter	SO-8	DIP-8	Unit
R _{th(JA)}	Thermal resistance junction to ambient	150	100	°C/W

2.3 Recommended operating conditions

Table 3. Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{OUT}	6	Output voltage		(1)		580	V
V _{BS} ⁽²⁾	8	Floating supply voltage		(1)		17	V
f _{sw}		Switching frequency	HVG, LVG load $C_L = 1 \text{ nF}$			400	kHz
V _{CC}	3	Supply voltage				17	V
TJ		Junction temperature		-45		125	°C

1. If the condition V_{BOOT} - V_{OUT} < 18 V is guaranteed, V_{OUT} can range from -3 to 580 V.

2. $V_{BS} = V_{BOOT} - V_{OUT}$.

3 Pin connection

Table -	4. Pin	descri	ption
---------	--------	--------	-------

No.	Pin	Туре	Function
1	LIN	I	Low-side driver logic input
2	HIN	I	High-side driver logic input
3	V_{CC}	Ρ	Low voltage power supply
4	GND	Р	Ground
5	LVG ⁽¹⁾	0	Low-side driver output
6	OUT	Р	High-side driver floating reference
7	HVG ⁽¹⁾	0	High-side driver output
8	V _{BOOT}	Р	Bootstrap supply voltage

The circuit guarantees 0.3 V maximum on the pin (at I_{sink} = 10 mA). This allows to omit the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.

L6387E

4 Electrical characteristics

4.1 AC operation

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{on}	1 vs. 5 2 vs. 7	High/low-side driver turn-on propagation delay	V _{OUT} = 0 V		110		ns
t _{off}	1 vs. 5 2 vs. 7	High/low-side driver turn-off propagation delay	V _{OUT} = 0 V		105		ns
t _r	5, 7	Rise time	C _L = 1000 pF		50		ns
t _f	5, 7	Fall time	C _L = 1000 pF		30		ns

Table 5. AC operation electrical characteristics (V_{CC} = 15 V; T_{J} = 25 °C)

4.2 DC operation

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
Low supp	oly voltag	e section			•	•	
V _{CC}		Supply voltage				17	V
V _{CCth1}		V _{CC} UV turn-on threshold		5.5	6	6.5	V
V _{CCth2}		V _{CC} UV turn-off threshold		5	5.5	6	V
V _{CChys}	3	V _{CC} UV hysteresis			0.5		V
I _{QCCU}	-	Undervoltage quiescent supply current	$V_{CC} \le 5 V$		150	220	μA
I _{QCC}		Quiescent current	V _{CC} = 15 V		250	320	μA
R _{dson}		Bootstrap driver on-resistance ⁽¹⁾	$V_{CC} \ge 12.5 \text{ V}$		125		Ω
Bootstrap	oped sup	oly voltage section					
V _{BS}		Bootstrap supply voltage				17	V
I _{QBS}	8	V _{BS} quiescent current	HVG ON			100	μA
I _{LK}	C	High voltage leakage current	V _{hvg} = V _{OUT} = V _{BOOT} = 600 V			10	μA
High/low-	side driv	er					
I _{so}	57	Source short-circuit current	$V_{IN} = V_{ih} (t_p < 10 \ \mu s)$	300	400		mA
I _{si}	5, 7	Sink short-circuit current	$V_{IN} = V_{il} (t_p < 10 \ \mu s)$	450	650	1	mA

Table 6. DC operation electrical characteristics ($V_{CC} = 15 \text{ V}$; $T_J = 25 \text{ °C}$)

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
Logic inp	outs						
V _{il}		Low level logic threshold voltage				1.5	V
V _{ih}	1, 2	High level logic threshold voltage		3.6			V
l _{ih}	1, 2	High level logic input current	V _{IN} = 15 V		50	70	μA
l _{il}		Low level logic input current	V _{IN} = 0 V			1	μA

Table 6. DC operation electrical characteristics (continued) (V_{CC} = 15 V; T_J = 25 °C)

1. $R_{DS(on)}$ is tested in the following way:

$$R_{DSON} = \frac{(V_{CC} - V_{BOOT1}) - (V_{CC} - V_{BOOT2})}{I_1 (V_{CC}, V_{BOOT1}) - I_2 (V_{CC}, V_{BOOT2})}$$

where I_1 is the pin 8 current when $V_{BOOT} = V_{BOOT1}$, I_2 when $V_{BOOT} = V_{BOOT2}$.

5 Input logic

L6387E input logic is V_{CC} (17 V) compatible. An interlocking feature is offered (see *Table 7*) to avoid undesired simultaneous turn-ON of both power switches driven.

Ir	iput	Output						
HIN	LIN	HVG	LVG					
0	0	0	0					
0	1	0	1					
1	0	1	0					
1	1	0	0					

Table 7. Input logic

6 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 3* a). In the L6387E device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in *Figure 3* b. An internal charge pump (*Figure 3* b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid undesirable turn-on.

C_{BOOT} selection and charging

To choose the proper C_{BOOT} value, the external MOSFET can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOSFET total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the C_{EXT} and C_{BOOT} capacitors is proportional to the cyclical voltage loss. It has to be:

C_{BOOT}>>>C_{EXT}

E.g.: if Q_{gate} is 30 nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop would be 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has to take into account also the leakage losses.

E.g.: HVG steady state consumption is lower than 100 μA , so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply a maximum of 0.5 μC to C_{EXT}. This charge on a 1 μF capacitor means a voltage drop of 0.5 V.

The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has a great leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSON} (typical value: 125 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken into account.

The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 2

$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$

where Q_{gate} is the gate charge of the external power MOSFET, R_{dson} is the on-resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

For example: using a power MOSFET with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is $5\mu s$. In fact:

Equation 3

$$V_{drop} = \frac{30nC}{5\mu s} \cdot 125\Omega \sim 0.8V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

7 Typical characteristic

57

DocID13990 Rev 4

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

8.1 DIP-8 package information

Table 6. DIF-6 package mechanical data								
Symbol	Dimensions (mm)			Di	ch)			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
А		3.32			0.131			
a1	0.51			0.020				
В	1.15		1.65	0.045		0.065		
b	0.356		0.55	0.014		0.022		
b1	0.204		0.304	0.008		0.012		
D			10.92			0.430		
E	7.95		9.75	0.313		0.384		
е		2.54			0.100			
e3		7.62			0.300			
e4		7.62			0.300			
F			6.6			0.260		
I			5.08			0.200		
L	3.18		3.81	0.125		0.150		
Z			1.52			0.060		

Table 8. DIP-8 package mechanical data

8.2 SO-8 package information

Symbol	Dimensions (mm)			Dimensions (inch)		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.750			0.0689
A1	0.100		0.250	0.0039		0.0098
A2	1.250			0.0492		
b	0.280		0.480	0.0110		0.0189
С	0.170		0.230	0.0067		0.0091
D ⁽¹⁾	4.800	4.900	5.000	0.1890	0.1929	0.1969
E	5.800	6.000	6.200	0.2283	0.2362	0.2441
E1 ⁽²⁾	3.800	3.900	4.000	0.1496	0.1535	0.1575
е		1.270			0.0500	
h	0.250		0.500	0.0098		0.0197
L	0.400		1.270	0.0157		0.0500
L1		1.040			0.0409	
k	0°		8°	0°		8°
CCC			0.10			0.0039

Table 9. SO-8 package mechanical data

1. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm in total (both sides).

2. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.

9 Order codes

Part number	Package	Packaging
L6387E	DIP-8	Tube
L6387ED	SO-8	Tube
L6387ED013TR	SO-8	Tape and reel

Table 10. Order codes

10 Revision history

Date	Revision	Changes	
11-Oct-2007	1	First release	
19-Sep-2008	2	Minor text changes on Table 7	
19-Jun-2014	3	 Added Section : Applications on page 1. Updated Section : Description on page 1 (replaced by new description). Updated Table 1: Device summary on page 1 (moved from page 15, updated title). Updated Figure 1: Block diagram on page 3 (moved from page 1 to page 3, added title to Section 1: Block diagram on page 3). Updated Section 2.1: Absolute maximum ratings on page 4 (removed note below Table 2: Absolute maximum ratings). Updated Table 5: Pin description on page 5 (updated "Pin" and "Types"). Added cross-references in Section 5: Input logic on page 8. Updated Section 6: Bootstrap driver on page 9 (updated values of "E.g.: HVG"). Numbered Equation 1 on page 9, Equation 2 on page 9 and Equation 3 on page 10. Updated Section 8: Package information on page 12 [updated/added titles, reversed order of Figure 10 and Table 9, Figure 11 and Table 10 (numbered tables), removed 3D package figures, minor modifications]. 	
20-Oct-2015	4	Updated <i>Table 1 on page 4</i> (added ESD row). Updated note 1. below <i>Table 6 on page 6</i> (replaced V _{CBOOTx} by V _{BOOTx}). Added <i>Section 9: Order codes on page 16</i> (moved <i>Table 10</i> from page 1, updated title). Minor modifications throughout document.	

Table 11.

DocID13990 Rev 4

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID13990 Rev 4